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Abstract

The new computational methodologies are making numerical analysis more common in
nearly all branches of engineering. In hydraulics and river engineering, an accurate
numerical approximation of the governing equations in dam break type flows has recently
become a major topic of interest. In this thesis, two-dimensional Saint-Venant calculations
are presented by Finite Element Method (FEM). The employed procedure is formulated
within the framework of Taylor-Galerkin scheme in conjunction with a Total Variation
Diminishing (TVD) method, which is a Flux Limiter to reduce the spurious oscillations
that emerge near sharp discontinuities. Despite the theme’s significance in numerical
studies, there has been very little investigation conducted on the scheme. Here, attempts
were made to numerically investigate the capabilities of the proposed model, to simulate
the wave propagation induced by dam break flows in a domain of two dimensions.
Initially, proof is presented to authenticate the fact that the Saint-Venant Equations (SVEs)
can be employed as the governing equations to numerically simulate the major aspects of a
dam break flow. To do this, the derivation of SVEs is discussed, and the nature of
equations is described in terms of eigenvectors and eigenvalues of the hyperbolic
equations. A scheme of weak form is proposed to the SVEs using the Taylor-Galerkin
method with a novel formulation while the topographic effects of the computational
domain are ignored. Accordingly, the constructive method presented in the weak form will
be used as a natural setting for a computational method to find the approximate solutions to
the dam break flow. The numerical results of two different dam break type flows are
presented; which are a 1D dam break and a 2D circular dam break problem. The proposed
model is validated against the analytical and numerical solutions to water surface elevation
and flow velocities, for the benchmark investigation cases. A decent harmony is observed,
which indicates that the numerical scheme is capable of capturing the salient features of the
respective flows in the numerical results. To thoroughly assess the capabilities of SVEs
here, and the numerical scheme, the results acquired from the 2D circular dam break test
case are schematically compared to the ones obtained from the simulation of the same
problem using a well known CFD package that employs the Finite Volume Method (FVM)
to solve the 3D Navier-Stokes and continuity equations.
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Chapter 1

Introduction



1.1 Motivation and Problem Statement

The new computational methodologies and developments in personal computers’ CPU
capacities are making numerical analysis more common in nearly all branches of
engineering. In hydraulics and river engineering, two-dimensional (2D), depth-averaged
models are starting to fasten together with one-dimensional (1D) models in general
simulations. These models are useful in researches where local characteristics of velocity
and depth distributions are significant. Instances include flood flow analysis, bridge design,
and contaminant transportation.

The purpose of this thesis is the study of a shock-capturing technique applied to a finite
element approximation of the Saint-Venant Equation (SVE) system, which is also referred
to in the literature as the Shallow Water Equation (SWE) system. To conduct the
computations, a new methodology is employed. The procedure is a combination of the
classic framework of Galerkin method to discretize the equations in space, and the Taylor
series expansion for the time discretization in conjunction with the Total Variation
Diminishing (TVD) concept, to reduce the spurious oscillations that mainly emerge near
abrupt changes of hydraulic flow properties (velocity, water depth, etc.), termed
“discontinuities”. The process is the scientific standard approach to Computational Fluid
Dynamics (CFD) for compressible and shock-dominated flows. In this study, the system
has been used to simulate the dam break flow comprising that the spillway is running
throughout the failure.

We also carry out an investigation of the mathematical properties and derivation of
SVEs, addressing the computational issues appropriate to conduct engineering problem
solving procedures. To motivate more deeply this study, results obtained from the
proposed Finite Element Method (FEM) are compared with the existing analytic and
numerical solutions. This introduction is intended to present a condensed summary of the
most important dam break phenomena and their calamitous affections, underlining the
numerical modelling considerations and a brief review of previous studies.

1.2 Dam Break Phenomenon

Dam break flow is the instantaneous release of an initially stationary water body by
removing a vertical obstacle; such as in case of a reservoir or a dam failure, the after
effects transient flow over the bed is termed as dam break flow. When a dam is breached,
calamitous flash flooding occurs as the impounded water flees through the opening into the
downstream river. Generally, the response time available for warning is much shorter than
that for acceleration of runoff floods. Consequently, the possibility of loss of lives is much
deplorable. The emphasis on dam failure hazards have become well known enough that it
is protected by the rules of International Humanitarian Law (IHL), and dams shall not be
made the object of attack during armed quarrels if that may cause brutal losses amongst the
civilian populations [1].



There have been around 200 important dam and reservoir failures in the world so far in
the 20" century. Regardless of the affected dam, the resultant flow tend to cause damage to
roads, railways, pipelines, power lines, telephone wires, houses and buildings, canals,
drainage systems, bridges, ports, airports, forests and agricultural areas, which can become
very serious. For instance, in August 1975 the world’s most awful dam failure occurred in
Henan' when the Bangiao Dam and the Shimantan Dam failed horrendously due to the
overtopping caused by torrential rains. In this incident, around 85,000 people died because
of the flooding, many more lost their lives during its consequent plague and starvation, and
millions of occupants lost their houses. This disastrous is analogous to the events of
Chernobyl and Bhopal for the nuclear and chemical industrial catastrophes.

The recent torrent in Pakistan in the summer of 2010, which was Pakistan’s worst
flooding in 80 years, has emphasized the saddening effect of flood flow on the lives of 20
millions of people along the floodplain of the River Indus. After all, the incidents underline
the necessity to develop advanced flood-prevention measures to lessen possible flooding
cause by dam breaks and other phenomena in the prospect.

Fig (1.1) shows the ten-year running average number of dam failures as available in the
digital library of National Performance of Dams Program (NPDP) [2].

60

= Ten-Year running average

Tet-Year running average w/o the 1994 Georgia flood dam
) failures
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Figure 1.1: Ten-year running average number of dam failures (excluding the many small dams that

failed during the 1994 Georgia floods) [2]

The running average is shown for the complete historic record (all failures) and for the
record excluding the many small dams that failed during the 1994 Georgia floods.
Dams can fail for one or a combination of the following motives [3]:
Overtopping due to floods that exceed the capacity of the dam
Deliberate act of malicious damage or disruption
Structural collapse of resources used in dam construction
Movement and/or failure of the foundation supporting the dam
Settlement and cracking of concrete or embankment dams
Piping and internal erosion of soil in embankment dams

"a province in China



e Unsatisfactory maintenance and upkeep

To reduce the effect of the calamity that these flows beget, certain considerations should
be taken into account. Beside the attempts to eliminate the main causes and prevent the
triggering, the first action to avoid catastrophe is to find solutions to mitigate the effects of
the flood i.e. by moving the residents or infrastructures away from the areas of risk.
Consequently, dam break study plays a prominent role when taking into consideration the
reservoir safety, both for developing urgent situation tactics for existing structures and in
considering the planning issues for new ones. The quick and ongoing improvement of
computing power and procedures during the last 25 years has permitted significant
promotes in the numerical modelling skills that could be functional in dam break analysis.

1.3 Numerical Analysis

In comparison to experimental investigations and because of the scale of the incident,
numerical methods could be more attention getting to predict the flow behaviors,
hydrographs, and routings. Numerical studies of currents in channels and rivers, mainly
driven by floods, have an interesting range of applications in environmental hydraulics,
navigation and provision of safe drinking water to the rural masses and industry use. It is
evident that improved predictive means are required to appraise the likely impact of torrent
and to contrive the emergency responses for particular areas. Consequently, the results
obtained from the numerical simulations can play a major role in designs and further
decisions. However, in mass dominated incidents; i.e. shock wave propagation in dam
breaks, the problem cannot be solved using the classic approaches.

The dynamics of the shock wave propagation is rather complex and its behavior do not
meet the terms of the regular assumptions of conventional steady and gradually varied
open-channel flows. This fact is probably the major factor in the lag of investigations of
dam break flows compared to coastal and estuarine problems. In order to comply with
these constraints and address new computational challenges, the next generation of
numerical models should be based on strong numerical techniques that accomplish the
following set of standards [4].

e Inherent local and global conservation

e High-order accuracy

e Computational efficiency

e Geometric flexibility (any type of grid structure and suitable for adaptive mesh
refinement)

Non-oscillatory advection (Monotonicity-Preserving)
e High parallel efficiency

The numerical approaches developed for the related fluid dynamics problems, have
been effectively adapted. These methods, referred to as “high resolution” or “shock
capturing” schemes, allow generously combined different numerical methods to obtain
precise results. For instance, the Taylor—Galerkin FEM presents excellent compromise
among accuracy and CPU time of computations as it is based on Taylor series expansion
up to the desired order [5]. To attain the previously mentioned requirements; in this thesis,
a new scheme is shaped in terms of a Taylor series expansion in time. Using this approach,
shock waves must be described for short time steps so the benefit of ease and speed of the
explicit schemes gets more significant than the difficulty of conditional stability.



Although, there are several accessible commercial and free CFD packages to conduct
the required hydraulic computations to simulate hydraulic phenomena; however, the
packages are too expensive; moreover, each of the free ones is typically designed for a
specific purpose. Being a closed-source program, it is unlikely to use a free software in a
wide range of engineering problems; and as a result, learning the knowledge of numerical
methods to code a specific solver for a particular phenomenon is inevitable. On the other
hand, numerical simulations of phenomena like dam breaks or tsunamis, using physical
illustrations such as Navier-Stokes equations, which are the default governing equations of
the most CFD packages, can frequently be awkward due to the extent of the modelling
geometries as well as through resolving free surfaces. However, SVEs of which there are a
number of demonstrations, provide an easier picture of such phenomena.

In the current survey, all of these facets have been comprehensively evaluated. A survey
of the literature exposes a motivating gap that there has been very little work on finite
element based total variation diminishing method in unsteady currents, and especially in
the dam break flows. This is rather strange, regarding the theme’s significance in
numerical simulations and accordingly as designing standards for floods, dam break waves
etc., which are important topics in Civil Engineering.

1.4 Literature Review

In this subchapter, a short overview of the relevant literature is presented. The review is by
no means comprehensive and is only relevant to the studies, carried out in this thesis.
Accordingly, we will mainly consider those studies in which the usage of the SVEs in
conjunction with numerical approximations and specially FEM was mainly effective in
numerical investigations of meteorology, overland and dam break flow simulations.

Scott Russel’s famous observation in 1834, of a Soliton? in the Union Canal in
Scotland, and his experimental investigations of the phenomenon has significantly
improved mathematical conception of the dynamics of nonlinear dispersive waves [6].
Restricting the attention to systems of equations; which admit travelling waves, for a
smoother description of the dynamics of shock wave propagation in different domains and
under certain boundary conditions, several suggested forms of SVEs can be found in
literature. Shallow water systems can be deduced by an asymptotic expansion of the basic
equations of fluid mechanics beginning from the Navier-Stokes equations and from
appropriate boundary conditions [7]. This derivation founded on two assumptions, quite
long waves or small height of the free surface comparing to the domain
size in longitudinal direction, and the vertical velocity components are neglected so that the
pressure distribution is hydrostatic. The numerical approximations of the SVEs are suitable
for investigation of various physical problems and in many engineering applications, where
reasonably lengthy waves occur. In fact, due to the special mathematical nature of the
equations and the unique physical range, in which they can be employed, one cannot rely
upon the mere transposition of schemes, which have been demonstrated to be successful
for the SVEs [8]. Generally, dispersion is likely to necessitate that a great spatial precision
and inertia term play a relevant role that asks for a proper description of the direction of
propagation of the shock waves or other types of physical disturbances. Despite the
common uses and thorough studies of the approximation of the SVEs by finite volumes
and finite differences, the finite element discretization schemes are however for the most
part not inspected.

* solitary wave



1.4.1 Numerical Approximation

Investigation teams have explored numerous models in order to capture the main features
of flood currents in a computationally efficient manner. For instance, Xanthopoulos and
Koutitas (1976) [9], as well as Hromadka et al. (1985) [10] validated a 2D dam break
model for flood wave propagation and flood plain study, based on the diffusive wave
approach. In their studies, they noticed that the inertial terms are insignificant in situations
where the bed surface is flat, and derived the SVEs according to these conditions. They
also concluded that the computational cost required solving the full SVEs increases by
50% the cost required to solve the Diffusive wave approximation of the SWEs (DSW).
However, the frame is beyond the scope of this study.

Zhang and Cundy (1989), have developed an entirely dynamical model solving 2D
SEVs, supposing specific types of the friction shear stresses by the use of a MacCormack
Finite Difference Method (FDM) [11].Their model allows spatial variations of hill-slope
attributes including surface roughness, microtopography, and infiltration. Their main
conclusion was that microtopography is the principal factor causing variations in overland
flow depth, velocity rate and path.

Frazao and Zech (2002) [12], conducted a series of numerical models and laboratory
experiments of dam break flows in channels with 90° bend with straight outlet reach. They
solved the 1D and 2D SVEs in Finite Volume Method (FVM), and compared to the taken
pictures of the water flow. They measured both the velocities in the bend and the water
depth profiles along the channels and noticed that the 2D model was in a good agreement
with the experimental data.

Ying et al. (2003) have also developed numerical models for flows generated by a dam
failure or levee breaching process using the conservative form of SVEs, for more
information refer to [13].

FEM and particularly in its most common technique, the standard Galerkin method,
have been applied to the SVEs by the following investigators, to allude to but a few: Wang
et al. (1972) [14] have employed the Galerkin method to solve the wave equations. They
have concluded that the Galerkin scheme is more efficient than the ordinary FDMs. Baker
(1973) [15, 16] has solved the problems involving inertia forces making use of Galerkin
related methods. He has not solved problems with free surfaces and stress singularities.
Cullen (1973) [17, 18] has applied a Galerkin method to simple two dimensional
equations. The method is applied to passive advection problems and to a non-linear gravity
wave problem useful in meteorological problems. Smith and Brebbia (1975) [19] have
modeled a transient, incompressible viscous flow in two dimensions, where the dependent
variables, stream function and vorticity, were approximated over each triangular element
using linear interpolation functions. Brebbia and Partridge (1976) [20] have numerically
simulated tidal effects, storm surges and currents in large bodies of water using six node
triangular element and applied the model to the North Sea. Fang and Sheu (2001) [21] have
merged Taylor-Galerkin and FCT methods, and applied it to several benchmarks e.g.
partial dam break problem.

However, only very few finite element programs have been published that are designed
to make it possible to sensibly employ the method to solve the SVEs. In meteorology,
Wang et al. introduced use of the FEM, and the scheme has since then advanced
significantly and that is now considered a tool preference by numerous researchers seeking
to solve the 2D SVEs. Some common finite element approximations for solving hyperbolic
equations are:

e Schemes for time integration with the development of higher order standard
Galerkin approximation
e Method of least squares-Galerkin



