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ABSTRACT

TESTING SEPARATE FAMILIES OF
HYPOTHESES

BY
ALIAKBAR RASEKHI

For testing separate families of hypotheses, the likelihbod ratio test does not have
the usual asymptotic properties. This thess, considers the asymptotic distribution
of the raﬁb of maximized likelihoods (RML) statistic in the special case of testing
separate scale or Iocaﬁon-scale families of distributions.

We derive séddlepoint épproximationé to the density and tail probabilities of
the log of the RML statistic. These approximations are based on the expansion of
. the log of the RML statistic up to the seéond order, which is shown not to depend
on the location and scale parameters.

The resulting approximations are applied in several cases, including Rayleigh
versus exponential, normal versus Laplace, normal versus Cauchy, and Weibull
versus log-normal.

Our resulis show that the saddlepoint approximations are satisfactory even for
fairly small sample sizes, and are more accurate than normal approximations and
Edgeworth approximations, especially for tail probabilities which are the values of

main interest in hypothesis testing problems.
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CHAPTER 1

Introduction

In standard pérametric inference, the family of probability models.is completely
specified except for a limited number of unknown parameters and the problem is
“to make inferences about the value of parameters: Suppose that we have a random

sample X,,..,X, from a distribution with density f (k; @), where 6 is an

unknown (vector-valued) parameter which ranges over parameter space © . The.
general testing problem may then be formulated as testing the null hypothesis

H,:0 e ®, versus the alternative hypothesis H, :6 € ®,, where ®, is a subset
of the parameter space and ©, =®—®0 is its compiément. For this type of

formulation, there are many well-known results for both small and large sample
cases. The main point about this formulation is that the distributions under both
null and alternative hypotheses belong to the same family. There is, however, a
more general formulation in which the distributions under null and alternative
~ hypotheses belong to separate (different) families. As noted by Box and Hunter
(1965): “Most of statistical discussions begin by assuming that a model is known
even though in practice, the model is usually known and the main problem is to
" build such a suitable model. The science of model-building has been a field
neglected by most statistical authors. A notable exception is the pioneering work

of Cox on tests of separate families of hypotheses.”

Let X,,..,X, be a random sample from a continuous distribution with
unknown density function A(x), and consider the problem of testing

H,:h(x)=f(x;6) vs H :h(x)=g(x2),




where f(x;0) and g(x;A) are density functions depending on unknown, possibly

vector-valued, parameters & and A; for example, to test logﬁorrnal distribution
versus exponential distribution, that is

H,: f(x; p1,0) =-—-———,—zjmx grloesu 20t yo H,: f(x;0)=0e"".

If f(x6) and g(xA) are members of the same family of densities, then the
standard likelihood ratio test is usually applicable and has the well known
asymptotic properties. In particular, minus twice the log of th\e ratio of maximized
likelihoods (RML) has an asymptotic chi-square distribution. However, these
pproperties do not hold if f(x;6) and g()f; A) are sepa}‘ate families (Cox, 1961), in
the sense that no member of the first family can be obtained as the limit of
‘members in the second family. Therefore, special Ar.nc‘ch.ods have been dt_aveloped
for testing such hypotheses. It should be noted that in the li;cerature, the problem of
testing separate families is also known as the problem on testing non-nested
hypotheses. V ’ A '

The problem of testing separaté families of hypotheses arises in many areas,
such as biology (testing between two quantal response curves, Cox 1962);
economics (testing non-nested economic models, Pesaran 1982); literature (dating
the works of Plato, Cox and Brandwood 1959); and political science (testing non-

nested models of international relations, Clarke 2001).

Note that in this formulation, the two families are not treated symmetrically.
There is an alternative formulation where the two families are treated
symmetrically. In that case, the problem is that of model selection or
discrimination—rather than hypothesis testing. Both formulations have been

considered in the literature.

In this thesis, we restrict attention to testing separate scale families

fED =55 vs gs =78, (L.1)




or separate location-scale families

x‘—-/’t“;)‘
9(1) 6(1) 20
with 9=,0"), A=(",AV), where f, and g, are known density

@0 == fo ) vs g(x4) = )go( ) (1.2)

Al

functions.

" The general theory of testing separate families of hypotheses (also known as

non-nested hypotheses) was initiated by Cox (1961, 1962). Let
T,=n"[¢,@)—-L, DI\ (1.3)

denote the log of the RML statistic, where

2 (¢9) Zlogf(x,,&) and £, ()= : Zlogg(x,,l)

denote the log-likelihood functions and & and 1 denote the maximum likelihood

estimatore under H, and H,, respectively. Cox proposed a test based on a
modification of the Neyman-Pearson likelihood ratio, the statietie |

T =T, - E,(T,),
where E,(.) denotes expectation with respect to f(x; &) . This statistic compares
the observed differenee between maximized log-likelihoods with an estimate of its
expected valﬁe under H,. Thus a large negative value of this statistic indicates
departure from H,. The statistic T¢ is asymptotically normal, but the normal

approximation may be satisfactory only for large sample sizes (Chen, 1980). For

small samples, the normal approximation may not work well for calculation of fail

probabilities, which are the values of main interest in hypothesis-testing. (In
discrimination, the most common procedure is to select the model with the higher -

likelihood; i.e. to select f(x;8) if T, >0 and to select g(x;4) if 7, <0. Hence,

we usually need the approximation near the center of the distribution, where
normal approximation is more satisfactory. For using normal approximation in
discrimination problems, see Bain and Engelhardt (1980), Fearn and Nebenzahl

(1991) and Gupta and Kundu (2003, 2004).




For testing location-scale’ families, the distribution of RML statistic 7, does

“not depend on the parameters; see Dumonceaux, et al. (1973); Therefore, in this

case, E,(T,) is a constant, and Cox’s test is equivalent to using the statistic 7,
directly: reject H, if T, <t,, where ¢, is the critical value for a test of size &. In
this case we can obtain the critical values #, by simulation for fixed value of

sample size n (Dumonceaux, et al., 1973).

For testing separate scale or location-scale families, invariance considerations

lead to a most powerful invariant (MPI) test; \s‘ee Lehmann, (1986, Ch. 6) and

'Héjek‘ and Sidak (1967). For scale families (1.1), if both densities are either zero

for x <0 or symmetric about zero, then the MPI test statistic is
[ v LA 0x)av
=l
fv"" [Teo(x)av
i=l

| (Lehmanﬁ, 1986, p.354, Lehmann, 2006); and for location-scale families (1.2), if

both densities are symmetric, the MPI test statistic is
f fv"‘ZHfo (vx; +u)dvdu
® =l
f fv"'zngo (vx, + u) dvdu
* i=l

(Lehmann, 1986, p.338, Hajek and Sidak, 1967, p.51). The MPI test rejects H,

for small values of the test statistics. However, as noted by Ducharme and Frichot
(2003), the calculations are often intractable and “the MPI test has been confined

to a limited pairs of densities™.

In this thesis, we apply saddlepoint tedhniques to approximate the distribution
of T . In general, saddlepoint approximations are more accurate than normal
approximations and Edgeworth approximations, especially for tail probabilities
(which are the values of main interest in hypothesis testing problems). This is
illustrated by several examples, which show that the saddlepoint approximations

are satisfactory even for fairly small sample sizes.
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The organization of this thesis is as follows: In Chapter 2, we review the most

' important approaches for testing separate families without restriction on location-

scales family. In Chapter 3, we first review Edgeworth and saddlepoint
approximation and then derive these approximations for distribution of the RML
statistics, as well as normal approximation. In Chapter 4, we apply our
approximations for some special and important scale or location-scale families,
including Rayleigh versus exponential, normal versus Laplace, normal versus
Cauchy, and extreme value versus normal (which is identical to Weibull versus

\, .
log-normal). We compare the approximations with the exact results obtained by

simulation; and also compare saddlepoint, Edgeworth and normal approximations.

We also compare RML and MPI test statistics. In Chapter 5, we present our
conclusions and recommendations. The Appendix contains details of derivation of

the saddlepoint approxifnationt and the computer programs that have been used.




" CHAPTER2 -

Literature Review

There are several methods proposed in the literature for testing separate families -

of hypotheses for general densities f(x;6) and g(x; 1). The RML statistics is the
most important statistics which is the basis of Cox’s, Williams® and Loh’s
methods. Another method discussed in this chapter is Epps’ method which is

based on the empirical "génerating function.

In this chapter we assume that X,..,X, is a random sample from a
distributidn with unknown density function h(x) , and we consider the problem of
testing _

H,:h(x)=f(x;0) vs H, :h(x)=g(x;1),
and
T, =n"'[£,(0)~ £, ()]

is the log of the RML statistic.

2.1 Cox’s Method

The problem of testing separate families of hypotheses was initiated by Cox

(1961). He stressed the existence of a class of problems that have not received
much attention in the literature; outlined a general method for tackling this
problem based on the likelihood ratio; and applied his results to a few special
cases. The large sample properties were also discussed in Cox (1962) by a slightly

different argument with some more comments and examples.

-6-




Cox (1961, 1962) proposed 4 test based on the statistic
If =T, - Ey(T,), )
where E,(.) denotes expectation with respect to f(x;6). This statistic compares

the observed difference between maximized log-likelihoods with an estimate of its

expected value under H,. Thus a large negative value of this statistic indicates
departure from H,. He showed that the statistics T, ¢ is asymptotically equivalent

to N
N

1y = n“il{(ei AR ACEIDED R ATNG —£:>15"’z,-,,}
where :

4,10 f(X,36), &, == 7 l0B S (X;6), £ =long(X;sy)
and [5¥] is the inverse of [E, (€, ,2.,))]. The quan'tity 4, is the almost-sure limi‘g '
of A (the maximum likelihood eétimator of 4 uﬁder H,) when H, holds with

parameter 6 (sec the Appendix). Then, he showed that, under H,, T is

n

asymptotiéally normal with mean 0 and variance

n"[varg(é, —42)—271(5“7,], 2.1)
]

where y, = Eg[£, (£, -1

As an alternative approach, Cox also suggested combining the two families

F(x;0) and g(x;A) in a more general family such that each family is a special

case of this general family. The density of the general family can be taken as

UEoPiseny™
[rosoy e}~ ay

Inference about p is then made in the usual way. Atkinson (1970) adopted this

hx;,0,4,p) =

approach and he derived a statistic based on

_7.




T4 = e, ()~ £, (3) - EylL ()~ £, (2
. where A; is the value of 4, evaluated at . Under the null hypothesis, 7.° and

T4 are asymptotically normally distributed with mean zero and same variance.

n

Pereira (1977) investigated the probability limits of these statistics under the
alternative hypothesis and their behavior in finite samples under the null

hypothesis. He concluded that Cox’s staistics is on the whole preferable. He

showed that T may provide an inconsistent test and gave an example (a test of -
H, against a class of a\lfcematives H, is said to be consistent if, when any member

’ of H, holds, the probability of rejecting H, tends to one as the sample size tends
to inﬁni&). In addition, in a simulation study T, always showed a better
agreement for the first two moments while T.° always showed a better agreement
for the third z'm‘du four'th'monvlents. Therefore, from practical point of view, T, is -

generally recommended because corrections for the lower order moments are

more easily obtained.

Cox did not consider regularity conditions for normality of .. Regularity-

conditions and a rigorous proof of the asymptolic normality of Cox’s statistic
were given in White (1982). We now review these regularity conditions. In the:

following, the conditions stated in term of f will also be understood to apply to

g, and parenthetical material indicates appropriate correspondence.

(1) The independent random variables X v X . have common distribution H

on Q, a measurable Euclidian space, with measurable density & = dH ldv.

(2) The distribution function F(x;6) (G(x;1)) has density f(x0) (g(x1))
which is measurable in x for every @ in ® (A in A), a compact subset of

p -dimensional (g -dimensional) Buclidian space, and continuous in 8 (1)

for every x in Q. The minimal support of f (g) does not depend on &
(4).




)

4)

®)

™

@®

®

(a) [log f(x;0)| < m(x) forall & in ®, where m is integrable with respect

to H ; and (b) Eflog f (X;0)] has a unique maximum 1n 0.

dlog f(x;0)/86,, i=1,...,p are measurable functions of x for each @ in

® and continuously differentiable functions of & for each x in Q.

|6 1og f(%:6)/86,06)) and  [plog f(x;6)/6, .010g f(x;6)/86,|,
N |

iL,j=1.., p are dominated by functions integrable with respect to A for all
§

The true value parameter &, is interior to ® and A(6,) and B(6,) are non-

xinQand 6 in ®.

singular, where

A6y~ { E[az log f(X;H)}}
26,36,

36) - { E\:aiog f(X:6) dlog f(X;B)}}'

and

26, 28,

{log[ f(x;0) g(x; /1)]}z is dominated by a measurable function integrable
with respectto H forall 8, 4 in ®xA.

| |o1ogl £ (x;6)/ g(ox; A))f (x; 2/ 86,] and [2logl £ (x;8)/ g(x; A1 f (x5 4)/ 84|,

i=1..,p j=l..q are dominated for all 4, A in ®xA by functions

integrable with respect to v.

A(6,) =—B(6,) under H,.

It should be noted that although assumption (2) requires the pafameter spaces

® (A) to be a compact set, we can assume that the parameter space is an open set

.9-




and then consider a cofnpact subset of it which contains 6 almost surely; see
Serfling (1980, p. 144) and Fearn and Nebenzahl (1991, p. 591).

By ﬁsing computer simulation, Chen (1980) showed that Cox’s test should be
used only when the sample size is sufficiently large. Bain and Engelhardt (1980)

used T, in choosing between a Weibull and a Gamma model. Feam and

Nebenzahl (1991) applied 7, for finding the sample size required for deciding

between two overlapping families, Weibull and gamma. Gupta and Kundu (2003,
2004) used an asymptotically equivalent statistics to 7, (see Appendix) in

discrimination between some distributions.

As noted in the introduction, for testing location-scale families, the

distribution of RML statistic T does not depend on the parameters; see

Dumonceaux, et al. (1973), Antle and Bain (1969) and Fisher (1934). Therefore,

in this case, Cox’s test is equivalent to using the statistic 7, directly.

Dumonceaux, et al. (1973) applied this statistic to testing some location-scale

families and obtained the critical values #, by simulation for different sample

sizes.

- 2.3 Williams’s Method

Williams (1970) observed that the conditions for validity of Cox’s test did not
kold in his problem and proposed directly simulating the distribution of T,

assuming & = . That is, for sufficiently large integer B, B sets
{Gelrrmnxi)s =10 B
of artificial data are drawn from the population with density f (x',é). From the

k th set, the maximum likelihood estimators &; and 1 and
T, =n™ Y llog £ (x,:6,) ~Tog g, 4]
i=l

_10-




