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ABSTRACT
ON MINIMAX AND RELATED MODULES

BY
ZEINALABEDIN TAGIBEIGLOO

In this dissertation all rings are Noetherian and commutative with
identity. An R-module M is called a minimax module if it has a finitely
generated submodule U such taht % is Artinian. In chapter 0 we will
give some basic theorems and definitions and some concepts which will
be needed later in our work.

In chapter 1 we introduce strongly faithful modules which one of its
results is used in Chapter 2 to characterizae minimax modules.

~ In Chapter 2 we investegate minimax modules. And finally in chap-
fer 3 we generelize minimax modules and we deduce fhe following the-

orem.:

~ Let R be an arbitrary ring and M a radical R-module. Then
(i) M is locally a minimax module.

(ii) M is an extension of a coatomic module by a semi-Artinian,

locally Artinian module.
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CHAPTER 0 |
BASIC DEFINITIONS AND RESULTS

Throughout this dissertation R will denote a commutative Noetherian
ring with identity. We write A < B(A < B) to mean that 4 is a

submodule(proper submodule) of B.

Definition 0.1. A submodule K of M is essential(or large) in M ,

in case for every submodule L of M,
KNL=0=L=0

Definition 0.2. An injective R-module which is an essential exten-

sion of M is called injective hull of M.

Definition 0.3. A submodule K of M is said to be small(or super-

fluous) in M, in case for every submodule L of M,

K+L=M=L=M.

If M is an R-module, we will denote by Rad(M) and E(M) the rad-
ical and the injecfive hull of M, respectively. We will write M(¥) (M G )
to indicate a direct sum of k-copies(infinitely-copies) of M. The nota-
tions A <, B and A << B will mean that A is an essential submodule
of B and A is a small submodule of B, respectively.

If (R,m) is a local ring and M is an R-module, we denote by
E the injective hull of R/m and set M° = Homg(M,E). We de-

fine Coass(M) = {p € spec(R) | p is the annihilator of an Artinian




factor module of M} where spec(R) = {p | p is a prime ideal of R}

and Ass(M) = {p € spec(R) | p is the annihilator of an nonzero element

z € M}.

Definition 0.4. A module M is called a minimax module, if it has

a finitely generated submodule U such that M/U is Artinian.

Definition 0.5. A module M is called semi-Artinian if every proper

submodule of M contains a minimax submodule.

Definition 0.6. A submodule U of an R-module M is called a

coatomic submodule if every proper submodule of U is contained in a

maximal submodule.

Definition 0.7. A nonzero module M is uniform provided that
I'Nn K # 0 for any two nonzero submodules I and K, or equivalently,
every nonzero submodule is an essential submodule.

Definition 0.8. A monomorphism f : K — M is said to be an

essential monomorphism in case Imf <, M.

 Definition 0.9. A module M that all of its factor modules are

indecomposable is called a couniform module.

Definition 0.10. Let M be a module. M is an essential cover

of a module N if there exists an small submodule U of M such that

M/U = N.

Definition 0.11. Let (T,)aca be an indexed set of simple submod-
ules of M. If M is the direct sum of this set, then M = Bacal, is a

semisimple decomposition of M. A module M is said to be semisimple




in case it has a semisimple decomposition.

Definition 0.12. A set M of submodules of M is called coindepen-
dent if U; + (nj¢|'UJ‘) =M for U; € M.

Propsition 0.13. Let M be a module with submodules K < N <
M and H < M. Then

()K<, MiHandonly f K<, Nand N <. M.
(2 HnK <, M if and only if H <, M and K <. M.
Proof. See [17, Proposition 5.16].

Proposition 0.14. If K << M and f : M — N is a homo-

morphism then f(K) << N. In particular, if K << M < N then
K << N.

Proof. See [17, Lemma 5.18|.

Lemma 0.15. FeranR-moduleMandaprimeidealPothhe
following statements are equivalent:

(1) P € Coass(M).

(2) P = Anng(A) for an Artinian factor module A of M.

~ (3) P € Ass(Homg(M,C)) for an Artinian R-module C.

If R is local, the above conditions are equivalent with
(4) P € Ass(M°).
Proof. (1) & (2) It is clear.

(2) = (3) Let f be canonical epimorphism f : M — M/N = C
then P = Anng(f) therefore P € Ass((Homg(M,C)) for an Artinian
R—module C.

(3) = (1) Let C be an Artinian R—module and f € Homg(M, C) such

that P = Anng(f) then A= M/Kerf is an Artinian factor module of
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M with P = Anng(A). Hence P € Coass(M).

(4) = (3) Put C = E.

(3) = (4) Now P € Ass(Homg(M,C)) and C 'C E" implies P €
Ass(Homg(M, E)") = Ass(M°) therefore P € Ass(M?).

Corollary 0.16. If (R,m) is a local ring and M is an R-module
then Coass{M) = Ass(M?).

Proof. It is clear.

Theorem 0.17.(Chevalley theorem) Let R be a complete semi-
local ring, m the intersection of its maximal ideals, and (ay,) descendiné
sequence of ideals of R such that N2 a, = (0). Then there exists an
integral valued function s(n) which tends to infinitely with n, such that
an C m*n), |

Proof. See [11, VIII, Sec.5, Theorem 13].

Theorem 0.18. Let R be a commutative Noetherian ring and let
M be a finitely generated R-module. Then every set of submodules of
M which is totally ordered by inclusion is countable.

proof. See [1, Theorem 1.1].

Definition 0.19. Av right Ore domain is a (nonzero) integral do-
main R such that any two nonzero elements of R have a nonzero com-
mon right multiple. Equivalently, the intersection of any two nonzero
right ideals of R must be nonzero. (Of course, all commutative domains
are Ore domain).

We write ann(z) for the annihilator (in R) of any element z € M,




and we write ann(M) for the annihilator of M.

Definition 0.20. The module M is said to be bounded if ann(M)

is nonzero; otherwise, M is called unbounded.

Definition 0.21. A right module M over a right Ore domain R is
a torsion module provided that each element of M can be annihilated

by a nonzero element of R.

Definition 0.22. Given any set I, a cofinite subset of I is any

J c I for which I — J is finite.

Definition 0.23. A (right) Ore domain R is (right) productively
bounded if for any nonempty family (M;);er of (right) R-modules such .
that the direct product [];c; M; is a torsion module, there is a cofinte
subset J of I such that [[;c; M; is bounded,i.e., [[;c; M; can be anni-
hilated by some nonzero element of R.

Corollary 0.24. Each right Ore domain, for which the right Krull
dimension exists and is countable, is right productively bounded.

___In particular, any commutative Noetherian domain with finite clas-
sical Krull dimensioh is productively bounded.

Proof. see [3, Corollary 5.6].

Let R be an arbitrary Noetherian ring. By (1 we denote the set of
all maximal ideals of R. Let a C R. Then we write M[a] = {z € M |
az = 0}.

An R-module M is célled radical if it has no maximal submod-
ules,i.e., Rad(M) = M. By P(M) we denote the sum of the radical
submodules of M. P(M) is the largest radical suBmodule‘ ;)f M. If




P(M) =0, M is called reduced.

For any R-module M we denote by L(M) the sum of all Artinian
submodules of M. L(M) is the largest semi-Artinian submodule of
M. L(M) always has a decomposition L(M) = ®meaLm(M), where
Lpo(M)=Y2.M [m"]. is called the m-primary component of L(M). If
L(M) =0, M is called socle-free.

Let M be an R-module. The Goldie-dimension of M(we write
dim(M)) can be defined in the following way:

dim(M) = n if and only if M has an essential submodule B that is
a direct sum of n uniform modules; dim(M) = oo if and only if M

contains a submodule which has an infinite decomposition.

Definition 0.25. A submodule K of a module M is said to be a
complement submodule provided that there is a submodule S such that
K is maximal in the set of all submodules T such that SNT = 0. In

this case, K is said to be a complement of S.

Theorem 0.26. (Goldie-dimension Theorem) For an R-module M
~and its injective hull E(M), the following are equivalent:

(1) M has ACC for direct summands, that is, every nonempty set of
independent submodules of M is finite,i.e., M contains no infinite direct
sum of nonzero submodules.

(2) E(M) is a direct sum of finite number of indecomposable modules.
(3) M contains an essential submodule which is a direct sum of a finite
number of uniform submodules.

(4) M has the ACC on complement submodules.




Proof. See [18, 1.12.A, Goldie-dimension Theorem)|.

Proposition 0.27. Let M be an R-module such that L(M) = M
and Ass(M) is finite. Then NCoass(M) = /Anng(M).
Proof. See [15, Anhang Satz].

Theorem 0.28.(Anhang theorem) Let M be an R-module. The

following statements are equivalent:

(1) M is a minimax module.

(2) Every factor module of M has finite Goldie-dimension.

(3) In every ascending chain U; C U; C ... of submodules of M almost
all factors U;,,/U; are of finite Goldie-dimension.

(4) In every descending chain Uy D U; D ... of submodules of M almost
all factors U; /Ui+1 are of finite Goldie-dimension.

Proof. See [15, Anhang Satz).

Proposition 0.29. If every proper submodulé of M is contained in

a maximal submodule of M, then Rad(M) is the unique largest small

submodule of M.

‘Proof. See [17, Proposition 9.18|.

Definition 0.30. We call M weakly complemented if, for every
submodule U of M, there is a submodule V of M such that U+V = M
and U NV is small in M.

Let R be aring and let R = my D m; D my D ... be a sequence of
ideals of R. We define the completion R of R with respect to the m;

to be the inverse limit of the factor ring R/m;,i.e., R = lim_R/m; =




{9 = (91,92,-..) €l R/m; | g; = gi( mod my) for all j > 1}.

Theorem 0.31. For every R-module M the following statements
are equivalent:
(1) Every coindependent set of submodules of M is finite.
(2) ¥ X;, X3, .. . is a chain of submodules of M with (N2 X;)+ X, = M
for all n > 2, then X; = M for all 2.
(3) M is weakly complemented, and. every factor module of M has ACC
for direct summands.
(4) M is an essential cover of a finite direct sum of indecomposable
modules.

(5) M is an essential cover of an Artinian module.

If R is local then the above conditions are equivalent with the following

condition
(6) M® has finite Goldie-dimension as B-module.
Proof. See [14, Satz 3.6].

Lemma 0.32. Suppose that U is a submodule of M. Then U is

_small in M, if U, is small in M, for all maximal ideals m of R.

Proof. See [12, lemma 4.1].

Theorem 0.33. For every R-module M the following are equiva-

lent:

(1) M is coatomic.

(2) There is an integer e > 1, such that ﬁm is finitely generated.
(3) There is an integer e > 1, such that m*M is finitely generated.

Proof. see [12, Satz A].

Definition 0.34. If (R, m) is local we call an R-module M discrete
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if there is an n > 1 with m"M = 0.

Corollary 0.35. An R-module M is coatomic if and only if M is

the sum of a finitely generated and a discrete submodule.

Proof. It is clear.

Lemma 0.36. Suppose that m is a maximal ideal of R. If there
is a coatomic submodule A of M which (M/A), = O then M, is a

coatomic R,,-module.

Proof. See [12, Lemma 3.2].

Lemma 0.37. If M,, is a coatomic R,,-module for all maximal ideal

m of R then M is coatomic.

Proof. See [12, Folgerung Zu Lemma 1.1].

Proposition 0.38. Let M be a module over a Noetherian ring R.
Then the condition M # 0 is equivalent to Ass(M) # 0.
Proof. See (2, IV, Sec.1.1, Corollary 1].

Lemma 0.39. If M is an extension of a coatomic module by a

module N such that L(N) = N, then
(a) For all prime ideal p ¢ Q, M, is a finitely generated R,-module.
(b) For all p € Ass(P(M)), dim(R/p) < 1.

Proof. See [14, Lemma 1.1].

proposition 0.40. If M is a coatomic module, then Ass(M) is
finite.

Proof. See [12, Folgerung Zu Lemnma 2.1].

Theorem 0.41. For every R-module M the following are equiva-




