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Introduction and Quantum Mechanics Background 

 

 

 

 

1-1 General Introduction 

With the development of quantum mechanics, an amazing change occurred in 

chemistry. The application of quantum mechanics to chemistry leads to a new 

subdiscipline in chemistry-quantum chemistry, as foretold by Dirac’s famous 

statement: 

“The underlying physical laws necessary for the mathematical theory of a 

large part of physics and whole of chemistry are thus completely known, 

and the difficulty is only that the exact application of these laws leads to 

equations much too complicated to be soluble. It therefore becomes 

desirable that approximate practical methods of applying quantum 

mechanics should be developed, which can lead to an explanation of the 

main features of complex atomic systems without too much 

computation.” [1] 
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The development of quantum chemistry enables us to study larger and 

larger chemical systems with the aid of computational tools. As the 

fundamental basis of quantum chemistry, Schrödinger’s equation uses the N-

electron wave function contains all the information we can possibly know 

about the system it describes.  

Chemical structures and reactions are simulated numerically by 

computational algorithms that are based on the fundamental laws of physics. 

Chemists can study a chemical event by running calculations on computers 

rather than by doing reactions and synthesizing compounds experimentally. 

Unstable intermediates and transition states can be modeled by computational 

chemistry, which can provide information about molecules and reactions that is 

impossible to obtain through observation alone. 

If we are interested in describing the electron distribution in detail, there 

is no way other than quantum mechanics. Electronic structure methods use 

quantum mechanics rather than classical physics. Electrons are very light 

particles and cannot be described correctly by classical mechanics. Quantum 

mechanics implies that the energy and the other properties of a molecule can 

be obtained by solving the Schrödinger equation [2-4]. 
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1-2 The Schrödinger Equation 

The Austrian physicist Erwin Schrödinger proposed an equation to find the 

wavefunction and energy of any system in 1926. The Schrödinger equation for 

a particle of mass m moving in one dimension with energy E is given in eq 1.1. 

( ) Ψ=Ψ+
Ψ

− ExV
dx
d

m 2

22

2
η       (1.1) 

( )xV  is the potential energy of the particle and depends on the position x; ħ (ħ 

=h/2π, h is Planck's constant) and Ψ is the wave function of the system with 

respect to time. 

The energy and many other properties of the particle can be obtained by 

solving the Schrödinger equation. For many real-world problems, the energy 

distribution does not change with time t, and it is useful to determine how the 

stationary states change with position x (independent of the time t). For every 

time-independent Hamiltonian Ĥ, there exist a set of quantum states, Ψn, 

known as energy eigenstates and corresponding real numbers En. Such a state 

has a definite total energy, whose value En is the eigenvalue of the state vector 

with the Hamiltonian Ĥ. This eigenvalue equation is referred to as the time-

independent Schrödinger equation. Equation 1.1 is a non-relativistic 

description of the system, which is not valid when the velocities of particles 

approach the speed of light. 
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1-3 The Born-Oppenheimer Approximation 

As nuclei are much heavier than electrons, their velocities are much smaller. 

Therefore, the Schrödinger equation can be separated into two parts; one part 

describes the electronic wave function for a fixed nuclear geometry, and 

another part describes the nuclear wave function, where the energy from the 

electronic wave function plays the role of a potential energy. This separation is 

called the Born-Oppenheimer (BO) approximation [2,3]. In another way, the 

nuclei look fixed to the electrons because they are heavier than electrons, and 

electronic motion can be described as occurring in a field of fixed nuclei in BO 

approximation. 

The full Hamiltonian for the molecular system can be written as given 

in eq 1.2. 

nuclelecelecnuclnuclelec V̂V̂V̂T̂T̂Ĥ ++++= −     (1.2) 

T and V terms are kinetic and potential energy terms, respectively. The BO 

approximation allows solving two parts of the problem independently, so we 

can construct an electronic Hamiltonian which neglects the kinetic energy term 

from the nuclei as given in eq 1.3. 

nuclelecelecnuclelecelec V̂V̂V̂T̂Ĥ +++= −       (1.3) 

This Hamiltonian is used in the Schrödinger equation to describe the motion of 

electrons in the field of fixed nuclei shown in eq 1.4. 
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eleceffelecelec EĤ Ψ=Ψ        (1.4) 

Solving this equation for the electronic wavefunction will produce the effective 

nuclear potential function effE . It depends on the nuclear coordinates and 

describes the potential energy surface for the system. effE  is also used as the 

effective potential for the nuclear Hamiltonian, shown in eq 1.5. 

effnuclnucl ETĤ +=        (1.5) 

This Hamiltonian is used in the Schrödinger equation for nuclear motion, to 

describe the vibrational, rotational, and translational states of the nuclei. 

Solving the nuclear Schrödinger equation approximately is necessary for 

predicting the vibrational spectra of molecules. 

 

1-4 The Approximation Methods 

The exact solutions for the Schrödinger equation are not computationally 

practical, due to repulsion terms and two-electron integrals. Therefore, various 

mathematical approximations are applied to solve the Schrödinger equation. 

There are three major classes of electronic structure methods: semiempirical 

methods [5,6], ab initio methods [7] and density functional methods [8]. 

a) Semiempirical methods: These methods use parameters derived 

from experimental data to simplify the computation. They solve an 

approximate form of the Schrödinger equation. Different semi-empirical 
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methods are classified by their approximations and parameter sets. Semi-

empirical calculations are relatively inexpensive compared to ab initio 

calculations, and provide reasonable descriptions of molecular systems and 

fairly accurate in predictions of energies and structures for many systems. In 

this thesis, we didn’t apply semiempirical methods at all. 

b) Ab initio methods: These methods use no experimental parameters 

in their computations. Their computations depend on the laws of quantum 

mechanics. Ab initio computations provide high quality predictions for many 

systems. 

c) Density functional methods: A third class of electronic structure 

methods used widely are called density functional methods (DFT). DFT 

methods are similar to ab initio methods. DFT methods are less expensive than 

the corresponding ab initio methods. Since they include the effects of electron 

correlation, they can give the benefits of some more expensive ab initio 

methods at a lower cost. In this thesis we applied this method, which are 

briefly discussed in the next chapter. The simplest way for Ab initio 

computation is Hartree-Fock that is described here. 

 

1-5 Hartree-Fock Theory 

Hartree-Fock theory [2,3] is one of the fundamental concepts of electronic 

structure theory. It depends on molecular orbital (MO) theory that uses one-
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electron wave function to construct the full wave function. Hartree-Fock theory 

is not an exact theory: it is an approximation to the electronic Schrödinger 

equation. The approximation is that we assume that each electron feels only the 

average Coulomb repulsion of all the other electrons. This approximation 

makes Hartree-Fock theory much simpler than the real problem, which is an N-

body problem. The advantage of this method is that it breaks the many-electron 

Schrödinger equation into many simpler one-electron equations. Each one 

electron equation is solved to yield a single-electron wave function, called an 

orbital, and energy, called an orbital energy. The orbital describes the behavior 

of an electron in the net field of all the other electrons. 

The Hartee-Fock method generates solutions to the Schrödinger equation 

where the real electron-electron interaction is replaced by an average 

interaction. With sufficiently large basis sets, the HF wave function is able to 

account for 99% of the total energy, but the remaining 1% is often very 

important for describing chemical phenomena. The difference in energy 

between the HF and the lowest possible energy in a given basis set is called the 

Electron Correlation (EC) energy. The approximation can be corrected by 

explicitly accounting for electron correlation by density functional theory 

(DFT), many-body perturbation theory (MBPT) [9], configuration interaction 

(CI) [10,11], and other methods. 
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It is important to remember that these orbitals are mathematical 

constructions which approximate the reality. Only for hydrogen atom (or other 

one-electron systems, like He+) orbitals are exact eigenfunctions of the full 

electronic Hamiltonian. As long as we consider molecules near their 

equilibrium geometry, Hartree-Fock theory often provides a good starting 

point for more elaborate theoretical methods which are better approximations 

to the electronic Schrödinger equation. 

 

1-6 Restricted and Unrestricted Hartree-Fock 

If the system has an even number of electrons and a singlet type of wave 

function (a closed-shell system), such wave function is known as Restricted 

Hartree-Fock (RHF) [12]. Open-shell systems may also be described by the 

restricted type wave functions where the doubly occupied orbitals is forced to 

be the same: this is known as Restricted Open-shell Hartree-Fock (ROHF) [12]. 

In other words, it uses doubly occupied molecular orbitals as far as possible 

and then singly occupied orbitals for the unpaired electrons  

For open-shell systems, an unrestricted method [12], capable of treating 

unpaired electrons is needed. For this case, the alpha and beta electrons are in 

different orbitals, resulting in two sets of molecular orbital expansion 

coefficients. The two sets of coefficients result in two sets of Fock matrices 

and ultimately to a solution producing two sets of orbitals. These separate 
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orbitals produce proper dissociation to separate atoms, correct delocalized 

orbitals for resonant systems, and other attributes characteristic of open-shell 

systems. However eigenfunctions are not pure spin states, but contain some 

amount of spin contamination from higher states (for example, doublets are 

contaminated to some degree by states corresponding to quartets and higher 

states). 

 

1-7 Basis Set 

The approximation involves expressing the molecular orbitals as linear 

combination of a pre-defined set of one-electron functions known as basis 

functions [13]. These basis functions are usually centered on the atomic nuclei 

and so bear some resemblance to atomic orbitals. Larger basis sets more 

accurately approximate the orbitals by imposing fewer restrictions on the 

locations of the electrons in space. An individual molecular orbital is defined 

in eq 1.6, 

µ
µ

µ χφ ∑
=

=
N

ii c
1

        (1.6) 

where the coefficients cµi are known as the molecular orbital expansion 

coefficients. µχ  refers to an arbitrary function in the same way iφ  refers to an 

arbitrary molecular orbital. 
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Ab initio methods try to derive information by solving the Schrödinger 

equation without fitting parameters to experimental data. Actually, ab initio 

methods also make use of experimental data, but in a somewhat more subtle 

fashion. Many different approximate methods exist for solving the Schrödinger 

equation, and the one to use for a specific problem is usually chosen by 

comparing the performance against known experimental data. Therefore, 

experimental data guides selection of the computational model, rather than 

directly entering the computational procedure. 

Basis sets [3] are one of the approximations inherent in essentially all ab 

initio methods. Expanding an unknown function, such as a molecular orbital, 

in a set of known functions is not an approximation, if the basis set is complete. 

However, a complete basis set means that an infinite number of functions must 

be used, which is impossible in actual calculations. The smaller the basis, the 

poorer the representation. 

There are two types of basis functions commonly used in quantum 

mechanical calculations. These are Slater-type orbitals (STO) [14] and 

Gaussian-type orbitals (GTO) [2,3]. STOs are not appropriate for numerical 

computations of multi-centered integrals for solving the Schrödinger equation 

due to high cost in computer time. Therefore their practical use in quantum-

mechanical calculations is now limited. Even though most quantum mechanics 

programs use GTOs as basis functions, GTOs have difficulty in describing the 
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proper behavior near the nucleus. Nevertheless, GTOs have the important 

advantage that evaluating a GTO integral while solving the Schrödinger 

equation takes much less computer time than a STO integral evaluation. 

Therefore, GTOs are preferred and are generally used in computational 

calculations. STOs and GTOs functional forms are given in eq 1.7 and eq 1.8, 

respectively. 

( ) ( ) r1n
m,lm,l,n, er,NY,,r ζ

ζ ϕθϕθφ −−=      (1.7) 

( ) ( ) 2rl2n2
m,lm,l,n, er,NY,,r ζ

ζ ϕθϕθφ −−−=     (1.8) 

N  is a normalization constants and m,lY  are the usual spherical harmonic functions. 

The exponential dependence on the distance between the nucleus and the electron 

mirrors the exact orbitals for hydrogen atom. However, STOs do not have any radial 

nodes, nodes in the radial part are introduced by making linear combinations of STOs. 

The exponential dependence ensures a fairly rapid convergence with increasing 

number of functions, however, the calculations of three- and four-centre two- electron 

integrals cannot be performed analytically. After deciding the type of function 

(STO/GTO) and the location (nuclei), the most important factor is the number 

of functions to be used. Here, it is brief explanation of different basis sets. 

a) Minimal Basis Set: The smallest number of functions possible is a 

minimum basis set that assigns one function to each orbital. For hydrogen and 

helium this means a single s-function. For the first row in the periodic table it 

means two s-functions (1s and 2s) and one set of p-functions (2px, 2py and 2pz). 
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For the second-row elements, three s-functions (1s, 2s and 3s) and two sets of 

p-functions (2p and 3p) are used. 

b) Double Zeta Basis Sets: A minimal basis set has rather limited variational 

flexibility particularly if the exponents are not optimized. The first step in 

improving the minimal basis set involves using two functions for each of 

atomic orbitals, i.e. a double zeta set. The best orbital exponents of the two 

functions are commonly slightly above and slightly below the optimal 

exponent of the minimal n = basis function. This allows effective expansion of 

the basis functions by variation of linear parameters rather than non linear 

exponents. 

c) Split-valence basis sets: The split-valence basis sets are not exactly a 

double zeta basis since only the valence functions are doubled. 

 3-21G: The valence functions are split into one basis function 

with two GTOs, and one basis function with only one GTO. The 

core consists of three primitive GTOs contracted into one basis 

function. 

 6-31G: The core consists of six GTOs which are not split, while 

the valence orbitals are described by one orbital constructed from 

three primitive GTOs and one that is a single GTO. 

d) Extended basis sets: The next step in improving basis sets could be adding 

polarization and diffusion functions. In the case of the scaling of the hydrogen 
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orbitals in the H2 molecule, it was argued that the orbital on one other nucleus. 

However, it is also clear that the influence of the other nucleus. We clearly 

need orbitals that have more flexible shapes in a molecule than the s, p, d, etc. 

shapes in the free atoms. This is best accomplished by adding in basis 

functions of higher angular momentum quantum number. Thus, we can distort 

the spherical 1s orbital on hydrogen by mixing in an orbital with p symmetry. 

The positive lobe at one side increases the size of the orbital while the negative 

lobe at the other side decreases. The orbital has overally moved sideways and 

it has been polarized. Similarly we can polarize the p orbitals if we mix in an 

orbital of d symmetry. We can add polarization functions to the 6-31G basis 

set as follows: 

 6-31G*: adds a set of d functions to the atoms in the first and 

second rows (Li-Cl). For other rows, adds a set of additional 

basis functions with L = X+1, where X is the largest quantum 

number L in the basis set. 

 6-31G**: for example, adds a set of d functions to the atoms in 

the first and second rows (Li-Cl) and a set of p functions to 

hydrogen.  For other rows the same as 6-31G*, but a set of 

additional functions are added to all atoms, including hydrogen. 

Sometimes the normal basis functions we use are not adequate. This is 

particularly the case in excited states and in anions where the electronic density 
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is more spread out over the molecule. To model this correctly we have to use 

some basis functions which themselves are more spared out. This means GTOs 

with small exponents. These additional basis functions are called diffuse 

functions and cause increasing in the interaction board of different atoms. We 

normally add these as single GTOs, not contracting them together. We can add 

diffuse functions to the 6-31G basis set as follows: 

 6-31+G: adds a set of diffuse functions, for example, adds a set 

of s and p orbitals to the atoms in the first and second rows (Li-

Cl). For other rows, adds a set of additional basis functions with 

L = X+1. 

 6-31++G: adds a set of diffuse functions, for example, adds a set 

of s and p orbitals to the atoms in the first and second rows (for 

other rows the same as 6-31+G) and a set of diffuse s functions 

to hydrogen. 

Diffuse functions can also be added along with polarization functions. This 

leads, for example, to the 6-31+G*, 6-31++G*, 6-31+G** and 6-31++G** 

basis sets. 

Basis sets for atoms beyond the third row of the periodic table are 

handled differently. For these very large nuclei, electrons near the nucleus are 

treated in an approximate way, via effective core potentials (ECPs) [12]. This 

treatment includes some relativistic effects, which are important in these atoms. 
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The ECPs and associated basis sets of Hay-Wadt [15], Stevens and co-workers 

[16], and Stuttgart-Dresden ECP [17] are widely used and implemented in 

many computational chemistry packages. 
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Theoretical Methods 

 

 

 

 

2-1 Quantum Theory of Atoms in Molecules 

The quantum theory of atoms in molecules (QTAIM) [18] provides a 

connection between experimental chemistry and the quantum theory of 

electronic structure. In fact, the theory through its dependence on the important 

theorems of quantum mechanics provides a basis for many models whose 

origins are rooted in experimental chemistry. The theory of atoms in molecules 

enables one to take advantage of the single most important observation of 

chemistry, that of a functional group with a characteristic set of properties. In 

this document, we have shown that the topological analysis of )(rρ , its first 

derivative (gradient field) )(rρ∇ , second derivative (Laplacian) )(2 rρ∇  and 

energy of atoms in molecules reveals helpful information about the electronic 

structure of a molecule. 
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2-1-1 The Topology of the Electron Density 

The QTAIM theory is based on a direct partitioning of the electron density in 

the physical space. The chemical bonds can also be characterized by various 

features of the electronic charge density [19].  

Bader [20] could show that the virial theorem holds for defined atomic 

basins, which can be considered as a rigorous quantum theoretical proof that 

the model of discussing the chemical behavior of a molecule in terms of atomic 

properties is justified. The position of the atomic nucleus is defined in the 

QTAIM model as a critical point in the three-dimensional space where the first 

derivatives )(rρ∇  are zero and the principle curvatures (eigenvalues) of the 

associated second derivatives of )(rρ  are all negative. Other critical points at 

which the gradient of the electron density )(rρ∇  vanishes define bonds, rings, 

and cages. The zero-flux surfaces which separate the atomic basins are defined 

as the gradient vector field whose trajectories of )(rρ∇ do not vanish at the 

atomic nuclei but at the bond critical point. A bond critical point (BCP) has 

two negative and one positive eigenvalues of the second derivatives of )(rρ . 

The trajectory which belongs to the positive eigenvalue connects the BCP and 

the bonded atomic nuclei. It is called the bond path and thus gives a physically 

sound description of the skeletal structure of the molecule in terms of atomic 

nuclei and chemical bonds.  
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The Laplacian at the BCP is the sum of the three curvatures of the 

density at the critical point, the two perpendicular to the bond path, being 

negative whereas the third, lying along the bond path, is positive. The negative 

curvatures measure the extent to which the density is concentrated along the 

bond path and the positive curvature measures the extent to which it is depleted 

in the region of the interatomic surface and concentrated in the individual 

atomic basins. 

In covalent bonding the two negative curvatures are dominant and 

0)(2 〈∇ rρ . In contrast, in closed-shell bonding the interaction is characterized 

by a depletion of density in the region of contact of the two atoms and 

0)(2 〉∇ rρ . In strongly polar bonding there is a significant accumulation of 

electron density between the nuclei, as in all shared interactions, but the 

Laplacian in this type of bonding can be of either sign. 

 

2-1-2 The Energy of an Atom in Molecule 

Energy densities require information contained in the one-electron density 

matrix (and not just the density, its diagonal elements). The energy densities 

(potential, kinetic, and total) are used to summarize the mechanics of a 

bonding interaction. The potential energy density, V(r), also known as the 

virial field, is the average effective potential field experienced by a single 

electron at point r in a many particle system. The virial field evaluated at any 


