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Abstract 

The prompt evolution on electrical power consumption has been required a power system 

revision in order to match power system capacity with load demands under contingency 

perturbation of system further normal condition. Hence, utilization of some different types 

of controller is vital to adjust system parameters on desired state of existence. As the most 

practical modern compensators which can interact with system alteration expeditiously due 

to their power electronic valves’ capabilities, FACTS devices and HVDC technologies 

could advance power systems performance and maintain them in the stable domain where 

have been implemented worldwide. 

In the present thesis, various FACTS controllers are considered and compared to evaluate 

their effect on power transmission capacity enlargement in addition to voltage and transient 

stability improvement in the case of power system institute’s laboratory with specific prac-

tical weaknesses to provide proper compensator to complete the laboratory’s facility for 

future. 

The main focus is the performance analysis of designed devices on system constraints in 

issue of voltage and transient stability. As shunt connected FACTS devices, SVC and 

STATCOM are considered in the weakest point of the line for two simple configuration of 

laboratory experimental test. In the first configuration that load connection is regarded, 

they mostly compensate reactive power insufficiency of system and achieve to advanced 

voltage collapse point. For the second arrangement with conjunction to the university net-

work, these controllers are employed to maintain system on proper stable domain after 

disturbance occurrences in addition to keep voltage level of all system buses on the appro-

priate constant value. Moreover, SSSC and UPFC influences on system behavior in the 

case of voltage and transient stability are examined for both configurations to probe quali-

fication of mentioned shunt-connected controllers in comparison to them. Besides, as an 

instance of HVDC impression on behavior of system, CSC-HVDC is investigated in the 

second configuration. 
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1 Introduction 

Recently, AC transmission lines encounter more critical situations due to the load de-

mand growth and inadequate power network capacity mainly for the long distance pow-

er transfers in vast distributed consumer areas. Thus, the most essential undertaking 

actions to seek proper power transmission and make network more reliable under un-

predictable circumstances are revision and refinement of current power networks. In 

order to revise the transmission systems and avoid dispensable network restructure, uti-

lization of some conventional controller types have been efficiently concerned. These 

controllers should be capable to alter the system characteristics through their parameters 

adaption to attain flexible operation of AC transmission lines under diverse consump-

tion demands. In this way, power electronic based controller systems could be more 

supportive than other static controllers and traditional compensators to compensate in-

sufficiency of power transfer capacity in addition to improvement of system stability.  

Numerous Flexible AC Transmission Systems as the most practical power electronic 

based controllers have been applied in the modern transmission lines broadly in recent 

years due to their advanced influence on system stability reinforcement further power 

transmission enhancement. Besides, incorporation of HVDC technologies with FACTS 

devices employment could devise noticeable improvement on power systems perfor-

mance specifically in the case of long distance transmission lines and prevent an unnec-

essary AC system deployment, which would result on unjustified economical invest-

ments. 

Accordingly, for the case of practical laboratory to illustrate FACTS devices and HVDC 

technologies influence on power transmission enhancement and system stability, utiliza-

tion of appropriate devices should be concerned to make feasible more experimental 

tests. So, in the first step, the various well-known parallel and series FACTS controllers 

and HVDC technology impression on laboratory system operation and principally their 

behavior on stability issue should be analyzed. Subsequently, the results will be com-

pared in the purpose of laboratory’s future plan to provide some more effective devices 

for learners’ experimental tests as a practical system to indicate system instability pre-

vention and power transferring enhancement in order to improve laboratory perfor-

mance. 

In this regards, as the first part of this thesis, essential elements of each power network 

will be explained in brief. The next section is allocated to introduce the FACTS control-

lers concisely which are categorized to shunt-connected, series-connected, and com-
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bined types to clarify the basic contents. Also, the main contexts of voltage and transi-

ent stability as the most issues on system stability in this case will be described. Subse-

quently, for the situation of institute’s laboratory with particular specification which 

will be analyzed without compensation firstly, diverse FACTS devices influence on 

power system behavior in voltage stability issue in the case of simple radial system with 

load will be demonstrated and compared to illustrate an impressive reinforcement on 

voltage stability restriction nose point. Afterward, the system behavior analysis for the 

case of ending point connection to the university’s network under three-phase fault oc-

currence as an instance of contingency disturbances will be investigated without and 

with consideration of various FACTS devices and CSC-HVDC technology with the 

intention of compare their qualification to advance system performance. 
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2 Theoretical Basics 

2.1 Basics of Equipments 

The main purpose of each three phase AC power system is the transfer of electrical 

power from generation stations as sending points to the consumption places as receiving 

points through different network structure such as radial, mesh or combination of both. 

The transfer occurs under specified voltage levels due to distance between the sending 

and receiving points which are classified as transmission, subtransmission and distribu-

tion system as seen in Fig 2.1. 
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Fig 2.1 Basic structure of AC power system 

 

The principal equipments of three phase AC power system to transport power in various 

voltage level comprise synchronous generators to supply required power with a high 

rated voltage for the rest of the system depending on the load demand, transformers 

which provide proper voltage level for each subsystem classification, transmission lines 

with diverse voltage and current levels sustainability fit in various subsystems, and 

loads which consist of different types of consumers such as a variety of three phase or 

single phase motors. In this section concise description of main elements are explained. 
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2.1.1 Synchronous Generator 

In general, high rated power in each AC power system is produced via three phase syn-

chronous generators. The typical structure of every synchronous generator comprises 

two parts, the turning part is called rotor includes field windings as an excitation circuit 

by DC current through various types of exciters. The static part which is known as sta-

tor whose armature windings are installed on it, so that produce magnetic poles identical 

to excitation windings poles on rotor. In other words, rotation of rotor in the first step 

initiates through the prime mover with controllable speed via a DC motor or different 

types of turbine. Subsequently, the uniform magnetic field around rotor which is pro-

duced via excitation current in the field windings is cut off with rotor and induces volt-

age into the armature windings according to Faraday’s Law. Thus, AC current flow 

which its frequency is proportional to the rotor speed under steady state situation is gen-

erated in the armature windings and its magnetic field rotates with the same speed of 

rotor. This speed is known as synchronous speed. Furthermore, the excitation and prime 

mover (governor) controllers are employed to adjust the generator output voltage and 

frequency on the desired constant values. 

Depend on rotor structure such as round, salient pole and cylindrical shape, steady state 

characteristics and generator application will be changed. For instance, salient pole 

which can be applied on low speed situation is utilized as hydroelectric generator in 

contrast to the round one as steam generator [7, 8]. 

In general, there are two practical models for every synchronous generator to analyze its 

steady state and transient behavior, simple model which is capable to evaluate generator 

behavior under steady state condition and dq0-model can be applied for both aims. 

 

2.1.1.1 Simple model 

In this model with assumption of symmetrical components for all three phases and sim-

plification of internal circuits of generator with the synchronous generator reactance 

  and total resistive losses    the simplified model for single phase can be shown by 

Fig 2.2 and terminal voltage of the phase   can be calculated relevant to internal AC 

voltage source of generator, which is called here as excitation voltage,   by 

  (      )       (2.1) 
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Fig 2.2 Simplified model of synchronous generator 

 

If the terminal voltage of generator is considered as slack node with reference voltage 

amplitude, depiction of phasor diagram for various power factors as lead, lag and unity 

can be noted in Fig 2.3. 
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Fig 2.3 Synchronous generator phasor diagram a) leading power factor b) lagging power 

factor c) unity power factor 

 

2.1.1.2 dq0 model 

To achieve a simplified mathematical model which can expose synchronous generator 

performance under both steady state and transient conditions, it is best recommended to 

transform the abc equations of machine to a frame of reference with two axes dq which 

is fixed on the rotor magnetic axes, well known as Park’s transformation and is intro-

duced by 

         √   [
  √   √   √ 
       (       )    (       )
         (       )     (       )

] (2.2) 

 

Moreover, the direct axis in dq0 frame leads a axis in abc frame by the angle θ and both 

frames rotate with the same speed (rotor speed) counterclockwise generally in synchro-

nous generator as seen in Fig 2.4. 
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Fig 2.4 abc and dq0 frames axes comparison 

 

Due to the transformation of parameters on the rotor reference frame, the time varying 

variables of machine will be omitted to simplify the state space modeling and further 

calculation of synchronous generator. The instance equivalent circuit of a two pole three 

phase synchronous generator in dq0 frame by consideration of one field winding and 

three short circuit windings as damper winding whose one of them is in the q and the 

rest are in the d axis direction is illustrated in Fig 2.5. The equivalent circuits are at-

tained through generator’s transformed equations from abc to dq0 frame which  

are called Park’s equations. Park’s equations’ variables are represented in  

Table 2.1 concisely. 

It should be noted entire parameters are referred to stator windings. So, the view point is 

from stator and reference frame is fixed on rotor [7, 8]. 

 


