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ABSTRACT

CYCLICITY OF SOME OPERATORS ON SPACES

OF ANALYTIC FUNCTIONS

BY

RAHMAT SOLTANI

In this thesis, an n-tuple of operators is a finite sequence of length n of

commuting continuous linear operators T1, T2, ..., Tn acting on a locally con-

vex topological space X. An n-tuple (T1, T2, ..., Tn) is said to be hypercyclic,

if there exists a vector x ∈ X such that the set {T1
k1T2

k2 ...Tn
knx : ki ≥

0, i = 1, 2, ...n} is dense in X. If there exists a vector x ∈ X such that

the set {λT1
k1T2

k2 ...Tn
knx : λ ∈ C, ki ≥ 0, i = 1, 2, ...n} is dense in X, then

(T1, T2, ..., Tn) is said to be a supercyclic n-tuple of operators.

In this thesis, in the first part, we give sufficient conditions under which the

adjoint of an n-tuple of a weighted composition operator on a Hilbert space

of analytic functions is hypercyclic. In the second part, we show that if T is a

supercyclic `-tuple of n× n complex matrices, then ` ≥ n. We also prove that

there exists a supercyclic n-tuple of diagonal n× n matrices. Furthermore, if

T = (T1, ..., Tn) is a supercyclic n-tuple of n × n complex matrices, then Tj’s

are simultaneously diagonalizable.
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1 Introduction

If T is a bounded linear operator on a Banach space X, i.e. T ∈ B(X), then

the orbit of a vector x ∈ X for T is the set Orb(T, x) = {T nx : n ∈ N ∪ {0}}.

A vector x is called hypercyclic vector for T if Orb(T, x) is dense in X or, in

other words, there is no proper closed T -invariant subset of X containing x. T

is called hypercyclic if it has a hypercyclic vector. A vector x ∈ X is said to be

cyclic vector for an operator T ∈ B(X) if the linear span of Orb(T, x) is dense

in X. An operator T ∈ B(X) is cyclic if it has a cyclic vector. Furthermore,

a vector x ∈ X is called supercyclic vector for an operator T ∈ B(X) if

C.Orb(T, x) = {λT nx : λ ∈ C, n ∈ N∪{0}} is dense in X. Finally an operator

T ∈ B(X) is supercyclic if it has a supercyclic vector. It is evident that

hypercyclicity implies cyclicity and supercyclicity.

The first example of hypercyclicity appeared in the space of entire functions

in 1929 by Birkhoff [4]. He showed essentially that the translation operator is

a hypercyclic operator, while in 1952, MacLane [28] proved the hypercyclicity

of the differentiation operator. Hypercyclicity on Banach spaces was discussed

in 1969 by Rolewicz [29], who showed that whenever |λ| > 1, λT is hypercyclic

where T is the unilateral backward shift on `p (1 ≤ p ≤ ∞) or c0.

In 1982, C. Kitai in her PH.D. Dissertation [27], determined the conditions

that ensure a continuous linear operator to be hypercyclic. This result, com-
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monly referred to as the Hypercyclicity Criterion, was never published, and a

few years later it was rediscovered in a broader form by R. M. Gethner and

J. H. Shapiro [19], who used it to unify the previously mentioned results of

Birkhoff, MacLane and Rolewicz, among others.

Hypercyclic tuples of operators were introduced by Kerchy in [26] and

Feldman in [14, 15]. The hypercyclicity of tuples of the adjoint of the weighted

composition operators were investigated in [36].

Adjoints of multiplication operators contain hypercyclic operators [20]. For

other useful references one can see [13, 17, 18].

The hypercyclicity of composition operators also has been considered by

Bourdon and Shapiro in [5, 6]. They studied the hypercyclicity of composition

operators on Hardy space H2. Good sources of background information on

composition operators include [8, 10, 33].

Also, Shapiro gave a complete characterization of hypercyclic composition

operators on H(D) in [34].

In [38] the authors showed that weighted composition operators with non-

constant weight functions can be hypercyclic on H(D).

A nice condition for hypercyclicity is the Hypercyclicity Criterion which

was developed independently by Kitai [27] and Gethner and Shapiro [19]. This

criterion has been used to show that certain classes of many operators are hy-

percyclic. Some reformulation of this criterion is given in [39]. In [40] it is

shown that hypercyclicity can occur for the adjoint of a weighted composi-

tion operator. In [24] it is given sufficient conditions under which a weighted
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composition operator on a Hilbert space of analytic functions is not weakly

supercyclic. Hypercyclicity, supercyclicity and cyclicity of the adjoint of a

weighted composition operator on a Hilbert space of analytic functions were

discussed by Kamali, Khani Robati and Hedayatian in [25].

The word ”hypercyclic” comes from the much other notion of a cyclic op-

erator. An operator T ∈ B(X) is said to be cyclic if there exists a vector

x ∈ X such that the linear span of Orb(T, x) is dense in X. This notion is of

course related to the famous invariant subspace problem: given an operator

T ∈ B(X), is it possible to find a non-trivial closed subspace F ⊂ X which

is T -invariant (i.e. T (F ) ⊂ F )? Here, non-trivial means that F 6= {0} and

F 6= X. Clearly, for all x ∈ X, the closed linear span of Orb(T, x) is an invari-

ant subspace for T ; hence, T has not non-trivial invariant closed subspace iff

every non-zero vector x ∈ X is a cyclic vector for T .

In this chapter we state the basic definitions and notations which are used

in other chapters.

1.1 Analytic functions spaces

Definition 1.1.1. ([10]) A Hilbert space of complex valued functions on a set

X is called a functional Hilbert space on X if the vector operations are the

pointwise operations, f(x) = g(x) for each x in X implies f = g, f(x) = f(y)

for each function in the space implies x = y, and for each x in X, the linear

functional f 7→ f(x) is continuous.
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A functional Hilbert space whose functions are analytic on the underlying

set will usually be called a Hilbert space of analytic functions.

From now, we assume that H is a Hilbert space of functions analytic on

the open unit disc D such that for each λ ∈ D the linear functional eλ of

evaluation at λ is bounded on H. Moreover, the constant function 1 and the

identity function f(z) = z are in H.

Theorem 1.1.2. ([9], The Riesz Representation Theorem ) Let L : H → C be

a bounded linear functional. Then there is a unique vector h0 in H such that

L(h) = 〈h, h0〉 for every h in H. Moreover, ‖L‖ = ‖h0‖.

Let Kx be the linear functional for evaluation at x, that is, Kx(f) = f(x).

For functional Hilbert spaces, the Riesz Representation Theorem implies that

there is a function (which we will usually call Kx) in the Hilbert space that

induced this linear functional: f(x) = 〈f,Kx〉. In this case, the functions Kx

are called the reproducing kernels.

Theorem 1.1.3. ([9], The Closed Graph Theorem) If X and Y are Banach

spaces and A : X → Y is a linear transformation such that the graph of A,

graA ≡ {x⊕ Ax : x ∈ X}

is closed, then A is continuous.

Theorem 1.1.4. ([9], Principle of Uniform Boundedness (PUB)) Let X be a

Banach space and Y a normed space. If A ⊆ B(X ,Y) such that for each x in

X , sup{‖Ax‖ : A ∈ A} <∞, then sup{‖A‖ : A ∈ A} <∞.
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Theorem 1.1.5. ([30], Baire Category Theorem) If X is a complete metric

space, the intersection of every countable collection of dense open subsets of X

is dense in X.

1.2 A collection of spaces

In this section, we introduce some spaces of analytic functions. For a good

reference on this subject see [10].

1. Hardy space

Definition 1.2.1. Let D = {z ∈ C : |z| < 1}. The Hardy space H2(D) is the

set of all analytic functions on D for which

sup
0<r<1

2π∫
0

|f(reiθ)|2 dθ
2π

<∞.

For f ∈ H2(D), ‖f‖2 is the 2th root of this supremum.

Definition 1.2.2. The Hardy Space H∞(D) is the set of analytic functions

that are bounded in D, with supremum norm ‖f‖∞.

If f is in H2(D), then the radial limit function of f , which is defined by

f ?(eiθ) = lim
r→1

f(reiθ),

exists and the mapping f 7→ f ? is an isometry of H2(D) into a closed subspace

of L2( dθ
2π

). Indeed, this mapping defines an isometric isomorphism between

H2(D) and a closed subspace of L2( dθ
2π

). Using this identification, f ?(eiθ) will
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be written as f(eiθ). Hence, H2(D) is a Hilbert space with an inner product

defined by

〈f, g〉H2 =

2π∫
0

f(eiθ)g(eiθ)
dθ

2π

and the set {1, z, z2, ...} is an orthonormal basis for it. Since every analytic

function in the open unit disc has Maclaurin expansion that converges abso-

lutely and uniformly on compact subsets of D, we have

H2(D) = {f =
∞∑
j=0

ajz
j :

∞∑
j=0

|aj|2 <∞}.

2. Bergman Space

Definition 1.2.3. The Bergman space A2(D) is the space of all analytic func-

tions on D such that ∫
D

|f(z)|2dA(z)

π
<∞,

where dA(z) = rdrdθ denotes the Lebesgue area measure on D. Also ‖f‖2 is

the 2th root of this integral.

For f, g in A2(D), define:

〈f, g〉 =

∫
D

f(z)g(z)
dA(z)

π
.

This is an inner product on A2(D), and with this inner product, A2(D) is

a Hilbert space, and {1, z, z2, ...} is an orthogonal set. Using the Maclaurin

expansion we get:

A2(D) = {f =
∞∑
j=0

ajz
j :

∞∑
j=0

|aj|2

j + 1
<∞}.

3. Dirichlet Space
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Definition 1.2.4. The Dirichlet space D is the set of all analytic functions on

D for which ∫
D

|f ′(z)|2dA(z)

π
<∞.

On this space, we have:

‖f‖2
D = |f(0)|2 +

∫
D

|f ′(z)|2dA(z)

π
.

For f, g in D, define:

〈f, g〉D = f(0)g(0) +

∫
D

f ′(z)g′(z)
dA(z)

π
.

This is an inner product on D, and with this inner product, D is a Hilbert

space.

We remark that the term |f(0)|2 is included in the expression for the norm

so that ‖1‖ = 1; some authors add ‖f‖2
H2 , instead of |f(0)|2, in the definition

of the norm, to accomplish ‖1‖ = 1. One can show that D is a functional

Hilbert space, that the monomials 1, z, z2, ... form an orthogonal basis for D,

and that

D = {f =
∞∑
j=0

ajz
j :

∞∑
j=0

|aj|2(j + 1) <∞}.

Remark 1.2.5. There are the following relations between the above spaces:

D ⊆ H2 ⊆ A2

and

H∞ ⊆ H2.
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4. Weighted Hardy Space

Definition 1.2.6. A Hilbert space H whose vectors are functions analytic on

the unit disc will be called a weighted Hardy space if the monomials 1, z, z2, ...

constitute a complete orthogonal set of non-zero vectors in H.

The assumption that each function in H is analytic in D and not some

smaller set is a pertinent part of the definition. The term ”complete” is used

here in its inner product space sense and the completeness is equivalent to

the density of the polynomials in H. We will usually assume that the norm

satisfies the normalization ‖1‖ = 1. Writing β(j) = ‖zj‖, the orthogonality is

easily seen to imply that the norm on H is given by

‖
∞∑
j=0

ajz
j‖2 =

∞∑
j=0

|aj|2β(j)2

and the inner product by

〈
∞∑
j=0

ajz
j,

∞∑
j=0

cjz
j〉 =

∞∑
j=0

ajcjβ(j)2.

The weighted Hardy space with weight sequence β(j) will be denoted H2(β)

or H2(β,D) if needed for clarity.

As it is mentioned in the beginning of this section, the Hardy, Bergman and

Dirichlet spaces can be introduced as weighted Hardy spaces. Before discussing

this point of view, we first remark that if the series
∑
j

aj converges, then the

root test implies that lim sup
j→∞

|aj|
1
j ≤ 1.

Now, consider a weighted Hardy space H2(β) whose weight sequence is

given by β(j) = 1 or β(j) = (j+1)
−1
2 or β(j) = (j+1)

1
2 . Take f(z) =

∞∑
j=0

f̂(j)zj
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in H2(β). It is easily seen that lim sup
j→∞

(|f̂(j)|2β(j)2)
1
j ≤ 1 and so in each

of the above three cases lim sup
j→∞

(|f̂(j)|)
1
j ≤ 1. Consequently, the radius of

convergence of the series f(z) =
∞∑
j=0

f̂(j)zj is at least 1. This, in turn implies

that f is analytic in the open unit disc D. Thus, the classical Hardy, Bergman

and Dirichlet spaces are weighted Hardy spaces with β(j) = 1, β(j) = (j+1)
−1
2

and β(j) = (j + 1)
1
2 , respectively.

Definition 1.2.7. The function

k(z) =
∞∑
j=0

zj

(β(j))2

is called the generating function for the weighted Hardy space H2(β).

At first note that the generating function is analytic on the unit disc. The

analyticity is a consequence of our assumption in the definition of weighted

Hardy space that all the functions of H2(β) are analytic in D.

Lemma 1.2.8. If k is the generating function for a weighted Hardy space,

then k is analytic on the open unit disc.

Proof. See([10], page 16).

Theorem 1.2.9. Let H2(β)be a weighted Hardy space. For each point ω in

the open unit disc, evaluation of functions in H2(β) at ω is a bounded linear

functional and, for all f in H2(β), f(ω) = 〈f,Kω〉 where Kω(z) = k(ωz).

Moreover, ‖Kω‖2 = k(|ω|2).

Proof. See([10], page 17).
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Definition 1.2.10. ([10]) The automorphism of the unit disc is the one-to-one

analytic map of the disc onto itself.

It is elementary to prove that if ϕ is a automorphism of the unit disc, then

ϕ(z) = λ
a− z

1− az

where |λ| = 1 and |a| < 1.

Every disc automorphism is an automorphism of the Riemann sphere and

has two fixed points on the sphere, counting multiplicity.

If a = 0, then ϕ(z) = −λz and has z = 0 and z = ∞ as its fixed points.

If a 6= 0, then from ϕ(z) = z, we have:

−az2 + (1 + λ)z − aλ = 0.

Thus the product of two roots of this equation is λa
a

, which |λa
a
| = 1. Therefore,

both fixed points of ϕ can not lie in D, or outside of D, or one in D, and the

other on ∂D. Thus, the automorphisms are classified according to the location

of their fixed points:

1. Elliptic, if one fixed point is in the disc and the other is in the comple-

ment of the closed disc, for example ϕ(z) = iz which has fixed point 0 and

∞.

2. Hyperbolic, if both fixed points are on the unit circle, for example

ϕ(z) = z+0.5
1+0.5z

which has fixed points ±1.

3. Parabolic, if there is one fixed point on the unit circle (of multiplicity

2), for example, ϕ(z) = [(1+i)z−i]
[iz+1−i] which has fixed point 1, with multiplicity 2.
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Definition 1.2.11. ([10]) For ζ on the unit circle and α > 1, we define a

nontangential approach region at ζ by

Γ(ζ, α) = {z ∈ D : |z − ζ| < α(1− |z|)}.

Definition 1.2.12. A function f is said to have a nontangential limit at ζ if

lim
z→ζ

f(z) exists in each nontangential region Γ(ζ, α).

Definition 1.2.13. We say ϕ has a finite angular derivative at ζ on the unit

circle if there is η on the circle so that (ϕ(z)−η)
z−ζ has a finite nontangential limit

as z → ζ. When it exists (as a finite complex number), this limit is denoted

by ϕ
′
(ζ).

Theorem 1.2.14. ([33], Denjoy- Wolff) Suppose that ϕ is an analytic map-

ping of the disc into itself, which is not an elliptic automorphism.

(a) If ϕ has a fixed point p ∈ D, then the iterates ϕn of ϕ converge to p

uniformly on compact subsets of D.

(b) If ϕ has no fixed point in D, then there is a point p ∈ ∂D such that the

iterates ϕn of ϕ converge to p uniformly on compact subsets of D.

Furthermore, p is boundary fixed point of ϕ; and the angular derivative of

ϕ exists at p, and 0 < ϕ
′
(p) ≤ 1.

(c) Conversely, if ϕ has a boundary fixed point p in which ϕ
′
(p) ≤ 1, then

ϕ has no fixed point in D, and the iterates ϕn of ϕ converge to p uniformly on

compact subsets of D.

Definition 1.2.15. The limit point p of preceding Theorem will be referred

to as the Denjoy-Wolff point of ϕ.
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Remark 1.2.16. In fact Denjoy-Wolff point of ϕ is a fixed point of ϕ in D

with |ϕ′
(p)| ≤ 1.

Lemma 1.2.17. ([10], Lemma 2.66) If ϕ is an analytic mapping of the disc

into itself with Denjoy-Wolff point p on the circle and ϕ
′
(p) < 1, then for any

compact set K in D, there is a nontangential approach region containing all

the iterates ϕn(K).

1.3 Hypercyclic and supercyclic tuples of op-

erators

Definition 1.3.1. An n-tuple of operators is a finite sequence of length n of

commuting continuous linear operators T1, T2,, ..., Tn acting on a locally convex

topological vector space X.

Definition 1.3.2. ([15]) We denote the semigroup generated by a tuple T =

(T1, ..., Tn) by FT = {T1
k1T2

k2 ...Tn
kn : ki ≥ 0, i = 1, 2, ..., n} and the orbit of

x under the tuple T by orb(T, x) = {Sx : S ∈ FT}. Also let Fp
T = {λS : λ ∈

C, S ∈ FT}.

Definition 1.3.3. An n-tuple T = (T1, T2, ..., Tn) is called hypercyclic, if there

exists an element x ∈ X such that orb(T, x) = {Sx : S ∈ FT} is dense in X.

In this case x is called a hypercyclic vector for T .

Definition 1.3.4. A vector x ∈ X is called a supercyclic vector for an n-tuple
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T = (T1, T2, ..., Tn), if the set {Sx : S ∈ Fp
T} is dense in X, and T is said to

be a supercyclic n-tuple of operators.

The above definitions generalize the hypercyclicity and supercyclicitiy of a

single operator to a tuple of operators.

The cyclicity of operators have received a good deal of attention in recent

years. The reference [2] provides an overview of many results that are known.

Proposition 1.3.5. ( [15], Proposition 2.4) Suppose that T = (T1, ..., Tn) is

a hypercyclic tuple on a separable Banach space X. Then every non-zero orbit

of T ∗ = (T1
∗, ..., Tn

∗) is unbounded.

Remember, if F is a set of operators on a separable Banach space X,

then F is called hypercyclic if there exists a vector x ∈ X such that the set

{Tx : T ∈ F} is dense in X.

Proposition 1.3.6. ( [15], Proposition 2.3) If F is a set of operators on a

separable Banach space X, then F is hypercyclic if for any two open sets U, V

there exists T ∈ F such that T (U) ∩ V 6= ∅.

Proposition 1.3.7. (Hypercyclicity Criterion [15]) Suppose that (T1, T2) is a

pair of operators on a separable Banach space Z. Suppose also that there exist

two strictly increasing sequences of positive integers {nj} and {kj}, dense sets

X and Y in Z and functions Sj : Y → Z such that :

(1) For each x ∈ X, T
nj

1 T
kj

2 x −→ 0 as j −→∞;

(2) For each y ∈ Y , Sjy −→ 0 as j −→∞;
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(3) For each y ∈ Y , T
nj

1 T
kj

2 Sjy −→ y as j −→∞.

Then (T1, T2) is hypercyclic pair.

Proof. If U and V are two non-empty open sets in Z, then choose x ∈ X ∩U

and y ∈ V ∩ Y and let zj = x + Sjy. Then zj and T
nj

1 T
kj

2 zj = T
nj

1 T
kj

2 x +

T
nj

1 T
kj

2 Sjy converge to x and y, respectively. Thus for large j we have zj ∈ U

and T
nj

1 T
kj

2 zj ∈ V . Thus Proposition 1.3.6 implies that the pair (T1, T2) is

hypercyclic.

Theorem 1.3.8. ([20], Theorem 4.9) Let Ω denotes a domain (connected,

open set) in C, and H is a Hilbert space of analytic functions on Ω. Suppose

every bounded analytic function ϕ on Ω is a multiplier of H, with ‖Mϕ‖ =

‖ϕ‖∞. Then for each such ϕ the operator M∗
ϕ is hypercyclic if and only if

ϕ(Ω) intersects the unit circle.

Lemma 1.3.9. ( [2], Lemma 1.27) Let a, b, λ, µ ∈ C. The set C.{(aλn, bµn) :

n ∈ N} is not dense in C2.

1.4 Hypercyclic diagonal matrix tuples

Definition 1.4.1. An n × n matrix with aij = 0 for all i 6= j is called a

diagonal matrix.

Definition 1.4.2. An n × n matrix A is diagonalizable, if there exists an

invertible matrix P such that matrix P−1AP is a diagonal matrix.
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Theorem 1.4.3. ([15], Theorem 3.4) For each n ≥ 1, there exists a hypercyclic

(n+ 1)-tuple of diagonal matrices on Cn.

Theorem 1.4.4. ([15], Theorem 3.6) There does not exist a hypercyclic n-

tuple of diagonalizable matrices on Cn.

Proposition 1.4.5. ([15], Corollary 4.2) If a, b > 1 are relatively prime inte-

gers, then {an

bk
: n, k ∈ N} is dense in R+.

Definition 1.4.6. ([17], Definition 1) Let X and Y be topological spaces and

Tı : X → Y (ı ∈ I) continuous mappings. Then an element x ∈ X is called

universal element (for the family (Tı)ı∈I) if the set

{Tıx : ı ∈ I}

is dense in Y . The set of universal elements is denoted by U = U(Tı). The

family (Tı)ı∈I is called universal if it has a universal element.

Theorem 1.4.7. ([17], Theorem 1 (The Universality Criterion), pp. 348-349)

Suppose that X is a Baire space and Y is second-countable. Then the following

assertions are equivalent:

(i) The set U of universal elements is dense in X.

(ii) To every pair of non-empty open subsets U of X and V of Y there

exists some ı ∈ I with

Tı(U) ∩ V 6= ∅.

If one of these conditions holds, then U is a dense Gδ-subset of X.
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