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ABSTRACT

H, OPTIMAL CONTROL AND SOME OF ITS
APPLICATIONS

BY

MOHAMMAD GANJVAR

H. (pronounced as ‘H-infinity’) control theory has been an

extensive research topic in the last ten years, and as a result, there are
50 ‘inany approaches to the state-space H.. control theory. An elegant
proof was first given in Doyle, et al. 1989 [9].
The present work, which is basically an overview of the subject starts
with a literature survey of H, control theory that can be useful for
researchers (Chapter 1). This follows by the preliminaries to
understand the concepts (Chapter 2 and 3) and solving (Chapter 4) of
H, problem. Chapter 5 obtains the performance indices of optimal and
robust control.

This relatively new approach to feedback design is explained
through a solution for special case (state-space problem) given in
Chapter 6. A better algorithm, however, and one which can be applied
to general H. problems, is given in Section 6.7 (without any
derivation). Most of the contents are not new but we believe that the
presentation given here may be of interest to those who are interested
in learning H ,, control with minimal mathematical background.

Finally, in Chapter 7 simple solved examples, illustrate this algorithm.
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CHAPTER 1

HISTORY AND LITERATURE SURVEY

Abstract

This part will very briefly review the history of the relationship
between modern optimal control and robust control. The latter is
commonly viewed as having arisen in reaction to certain perceived
iriédequacies of the former. More recently, the distinction has
effectively disappeared. Once controversial notions of robust control
have became thoroughly main streams, and optimal control methods
permeate robust control theory. This has been especially true in A
theory.

The primary focus of this chapter, which will serve as a short
introduction to this thesis. Much of this is taken directly from [68],

which also has most of the references.

1.1 The 70’s, briefly

We could trace the origins of robust control almost arbitrarily far
back in time, since robustness has always been the point of feedback,
but we will start this narrative more recently by quickly recalling the
controversy about LQG robustness in the mid to late 70’s.One of the
foundations of mode:n control theory was optimal control, which was
tremendously successful in a variety of applications. The modern
optimal control sample for feedback design, i.e. the LQG problem,

however, had relatively little impact on practical control design. One




of the critiques of LQG was that it did not directly address many
issues that were already well understood in at least some limited way
in classical control, and gain and phase margins were often pointed to
as an example of this. The LQG proponents could, however, point to
certain guaranteed properties of LQG regulators as indications of
inherent robustness. As we now know, these guarantees were of no
practical value, and indeed the whole notion of guaranteed margins 1s
unacceptable.

At about the same time, singular values or the #, norm was
proposed for robustness analysis of multi-variable systems. This point
of view added necessity to the small gain methods of the 1960s
[65,63,52].

That 1s, whereas small gain gave sufficient conditions for stability
for a set of uncertairty, the robust control interpretation was that the
same condition was necessary and sufficient for a particular set. This
emphasis on necessity motivated much studv of the potential
conservativeness of robustness measures and techniques for reducing
it.

One of the motivations for the original introduction of 4 .methods
by Zames [66] was to emphasize plant uncertainty. The H » norm was
found to be appropriate for specifying both the level of plant
uncertainty and the signal gain from disturbance inputs to error
outputs in the controlled system. The H_ norm gives the maximum
energy gain (the induced, L, system gain), or sinusoidal gain of the
system. This is in contrast to the A, norm, which gives the variance of
the output given white noise disturbances. The robust stability

consequence was the main motivation for the development of H,




methods rather than the worst-case signal gain. We compromised on
performance to get one norm that let us do everything. With this
compromise, we could then talk about robust performance with

structured uncertainty.

1.2 The 80’s and the rise of H,

The synthesis of controllers that achieve an #& , norm
specification gives a well- defined mathematical problem whose
solution became a major research focus in the 1980s. Most of the
original solution techniques were in an input-output setting and
involved analytic functions (Nevanlinna-Pick interpolation) or
operator-theoretic methods (Sarason [56], Ball- Helton[3]) and such
derivations involved a fruitful collaboration between operator theorists
and control engineers. Indeed, H_ theory seemed to many to signal
the beginning of the end for the state-space methods. which had
dominated control for the previous 20 years. Unfortunately, the
standard frequency-domain approaches to H_ started running into
significant obstacles in dealing with multi-input multi-output (MIMO)
systems, both mathematically and computationally, much as the A, (or
LQG) theory of the 1950’s had.

Not surprisingly, the first solution to a general rational MIMO & "
optimal control problem [8], which we will refer to as the 1984
approach, relied heavily on state-space methods, although more as a
computational tool than in any essential way. The procedure involved
state-space inner/outer and coprime factorization of transfer function
matrices, which reduced the problem to a Nehari/Hankel norm

problem solvable by the state-space method in [17]. Both [14] and
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[15] gave expositions of this approach, which in a mathematical sence
“solved” the general rational problem. Much of the subsequent work
in H_control theory focused on the 2 x 2-block problem that was a
central part of this solution, either in the model-matching or general
distance forms. Unfortunately, the associated complexity of
computation was substantial, involving several Riccati equations of
increasing dimension, and formulae for the resulting controllers tended
to be very complicated with high state dimension. Encouragement
came from [34] and [35] who showed, for problems transformable to 2
x“1-block problems, that a subsequent minimal realization of the
controller has state dimension no greater than that of the plant. This
suggested the likely existence of similarly low dimension optimal
controllers in the general 2 x 2 case. Additional progress came from
[2,27, 13, 24, 32, and 31].

Simple state-space A, controller formulae were first announced in
Glover and Doyle [18] (after some sustained manipulation). However
the very simplicity of the new formulae and their similarity with the
H> ones suggested a more direct approach. Independent enhancement
for a simpler approach to the H_ problem came from papers by
Khargonekar, Petersen, Rotea, and Zhou [28, 29]. They showed that
for the state-feedback #, problem one could choose a constant gain
as a (sub)optimal controller. In addition, a formula for the state-
feedback gain matrix was given in terms of an algebraic Riccati
equation. Also, these papers established connections between H,
optimal control, quadratic stabilization, and linear-quadratic

differential games. They showed that solving an algebraic Riccati




