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ABSTRACT

THEORETICAL BASES FOR
LASER COOLING

BY
FATEMEH SHAABANI RAD

In this thesis, the theoretical bases for laser cooling is presented. In so
doing, we investigate the interaction between electromagnetic fields
(light) and atoms in three regims of classical, semi-quantum
mechanical and fully quantum mechanical physics. We begin our
study by assuming that both the atoms and the field behave classically,
so that classical electrodynamics applies. We then proceed to the cases
where the atoms behave quantum mechanically, while the field is still
classical. Finally, we advance the presentation to the cases where both
entities behave quantum mechanically. In the quantum mechanical
treatment (both semi and full) the atms are modled as having two and
(or) three energy levels.

In the classical treatment, the force on a typical atom is calculated,
showing that classical interaction of atoms and fields can cool the
atomic system. In this case we also show that the kinetic energy (in
other words, the temperature) of a collection of sodium atoms is
reduced to %37 of its initial value (at room temperature), in a time of

the order of 10™*s. Furthermore, for the quantum mechanical cases we
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have calculated the limiting (minimum) temperature for a collection of
sodium atoms in thermal equilibrium. A comperison between the
results of the last two cases shows that, within the approximations
used in this work, the quantum behavior of the electromagnetic field
(light) does not affect the limiting temperature.

Moreover, we show that the cooling rate obtained from the quantum

mechanical models is about 10® times larger than its classical

counterpart.
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CHAPTER 1

INTRODUCTION

The interaction of electromagnetic (EM) radiation (light) with
atoms can be used to manipulate the dynamical behavior of atoms as well
as to probe its structure. For example, in optical pumping, one can use the
resonant exchange of angular momentum between atoms and polarized
photons to orient the spins of the atoms and vice-versa [1]. Another use
of such interactions is to decelerate atoms as well as to probe its structure
[2]. This technique is known as laser cooling, and relies on resonant
exchange of linear momentum between photons and atoms to control the
atomic external degrees of freedom and thus to reduce their kinetic
energy [3]. In other words, laser cooling is the use of laser radiation to
reduce the temperature of a collection of atoms.

Atoms cooled by laser cooling have been used in application to fields
of Physics such as high-resolution spectroscopy [4-7], studies of
collisions at low energies [8,9], study of condensed phases such as
Coloumb crystals and Bose condensation [10], atomic clocks [11-13],
surface physics [8] and collective quantum effects [14-17].

The possibility of changing the trajectory of atoms by resonant
interaction with light was demonstrated as early as 1933 by Frisch [18],

who reported the deflection of atomic beam, irradiated at right angle, by




the resonant light from a discharge lamp. With the advancement of lasers,
experimental aspects of optical cooling (as well as trapping) of ions and
neutral atoms began to form the bases of many reports [19-21]. In this
work we present a review of the theoretical foundations of “ laser
cooling”.

»

The basic concept of “laser cooling ”, simply stated, may be expressed
as follows. When the moving atoms interact with the EM field of the
laser, they gain energy (they become excited) and momentum. The
excited atoms, in turn, spontaneously decay into lower states, thus
loosing energy. Since spontaneous emission is random, on the average,
atoms do not recoil because of this. If the laser beam is applied opposite
to the atomic motion, the interaction causes the atoms to slow down
(loosing kinetic energy) and thus the collection cools. Furthermore,
because of the atomic motion, the resonance frequency, as seen by the
atoms, is Doppler shifted, making the decelerating force velocity-
dependent, similar to a first-order frictional force. In the literature, this
phenomenon is referred to as “Doppler cooling ”. The main aim of this
work is to formulate the phenomenon of Doppler cooling in classical,
semi-quantum and fully quantum-mechanical regimes of the interaction
of EM fields and atoms [22].

Our work begins, in chapter two, with a review of the formulation of
classical electrodynamics; Maxwell’s equations and the Lorentz force. In
this chapter we also present the Lagrangian and Hamiltonian formulations

of the EM interaction. We further show that when a classical electric

dipole is placed in an external electric wave, it experiences a decelerating




force, giving rise to a lower temperature. In the same chapter we calculate
the rate of energy loss and show that it would take about, 10™s to reduce
the atomic (sodium) energy to %37 of its initial value.

In chapter three the semi-quantum formulation, in which the atoms are
modeled as two-level entities, of the phenomenon of laser cooling is
taken up. Within the electric dipole approximation and using the density
matrix formulation, we show that the atom experiences a velocity-
dependent decelerating force. The time interval, for which the energy is
reduced to %37 of its initial value, is calculated to be of the order of
107°s. The results of this chapter show that the semi-quantum treatment
(which is much closer to reality) gives rise to a cooling rate that is 100
times larger than the results of the classical treatment.

The full-quantum mechanical formulation of the laser cooling forms
the subject of chapter four. In this chapter, after a brief account of the
quantization of EM fields and time-dependent perturbation theory, we
calculate the cross-section for spontaneous emission. From this cross-
section we present the rate of energy loss and show that, within the same
approximations, the cooling rate is identical to that of the semi-classical
formulation.

Finally, in chapter five, some concluding remarks are made.




CHAPTER 2

THE INTERACTION BETWEEN ATOMS AND
ELECTROMAGNETIC FIELDS IN THE
CLASSICAL TREATMENT

The interaction of charged particles and the radiation field is most
preciesly described by quantum electrodynamics, where both the particles
and the field are quantized. Since the theory of quantum electrodynamics
is based on the classical electrodynamics, a deeper insight into the former
theory is gained from considerations of the latter. Therefore, this chapter
is devoted to the interaction of nonrelativistic classical charged particles
and classical Electromagnetic(EM) fields. Since both the classical and the
quantum theories are based on Maxwell’s equations and the Lorentz
force, a review of these equations is given. The classical dynamics of
charged particles and EM ficlds is then developed, both in terms of a
Lagrangian and a Hamiltonian. Finally, the motion of an atom in an
electromagnetic field is considered. Along these lines, we show that,
under suitable conditions, the EM interaction decelerates the atoms

which, in turn, reduces the temperature.

2.1 Maxwell’s Equations and the Lorentz Force




The physical system to be considered here consists of a fixed number,

N, of particles each having a mass m,and a charge g, (@ =1.2,..,N). The

interaction of such a system with electromagnetic fields is governed by

Maxwell’s equations, which rclatc the time dependent electric and

magnetic induction fields, £ and B, respectively, to the charge and

current densities, p and j, respectively. This equations are as follows

(in MKks units) [23],
V-D=p
VxE:--aﬁ
dt
V-B=0
VxH=7+a—D,
at

—

with the constitutive relations,

——

D '—‘Sog
and
B=loH .

Here € and Wy are the free space

respectively. In Eqgs.(2.1.1)-(2.1.4), the

2.1.1)
(2.1.2)

(2.1.3)

(2.1.4)

(2.1.5)

(2.1.6)

permitivity and permeability,

fields are evaluated at spatial

point 7 and time t. The first equation is Gauss’s law, the second one is

Faraday’s law, the third one indicates the absence of magnetic

monopoles, and the last equation is the Ampere-Maxwell law. If the

position of the « th particle at a time t is denoted by X, (t), the charge and




current densities in Egs.(2.1.1) and (2.1.4) may be defined, respectively,

as,
N

p(F.1) = ¥ q,8F - X, (1], 2.1.7)
a=1

and

- N -

JFED =Y q.%, 8[F-%, 0], (2.1.8)
a=1

where (%) is the Dirac delta function and X, =dx, /dt is the velocity of

the ath particle. Maxwell’s equations are consistent with charge

conservation,

Viﬁﬁ+%v@o=m (2.19)

which can be obtained by taking the divergence of Eq.(2.1.4) and using
Eq.(2.1.1). The effect of the EM field on the charged particles is
determined from the Lorentz force, which is experimentally determined
to be [23],

m X, =qu[B(Xy,t) + X, XB(X,, )] (2.1.10)
Maxwell’s equations, Eq.(2.1.1)-(2.1.4), with Eq.(2.1.10) govern the
dynamical behavior of the coupled system of the nonrelativistic charged
particles and electromagnetic fields. Given a prescribed charge and
current densities, one can solve these equations for the fields and vice-

versa.

2.2 Vector and Scalar Potentials




