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ABSTRACT

In the first part, two new fluorinated diamines, 2,2'-thiobis-[4-methyl(2-
trifluoromethyl)4-aminophenoxy) phenyl ether] (DAS) and 2,2'-sulfoxide-bis[4-
methyl(2-trifluoromethyl)4-aminophenoxy) phenyl ether] (DASO), were successfully
synthesized by refluxing the dibenzosulfide (DHS) or dibenzosulfoxide (DHSO) and 2-
chloro-5-nitrobenzotrifluoride in the presence of potassium carbonate, followed by
catalytic reduction with zinc/ammonium chloride. Then, two series of organic-soluble
polyamides (PA,,) and (PA1-7) bearing flexible ether, sulfide, and sulfoxide links,
electron-withdrawing  trifluoromethyl groups, and ortho-phenylene units were
synthesized from these new diamines (DAS and DASO) with various aromatic diacids
via direct polycondensation with tripheny! phosphate and pyridine. The polyamides were
obtained in quantitative yields and possessed inherent viscosities in the range of 0.35-
0.90 dL g’ All the polymers were noncrystalline, and showed outstanding solubilit; and
could be easily dissolved in amide-type polar aprotic solvents (e.g., N-methyl-2-
pyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), and N,N-dimethylformamide
(DMF)) and even dissolved in less polar solvents (e.g., pyridine and tetrahydrofuran).
They Wére in useful levels of thermal stability: 10% weight loss in nitrogen atmosphere
was in the range of 375-505 °C. These polymers showed glass transition temperatures
between 160-220 C. Also some of these polymers could be cast into flexible and tough
films from DMAc solutions. The comparison of the results of thermal stability and
solubility of prepared polymers with analogues sulfur containing polymers indicated that
incorporation of S=O into the polymer backbone effectively enhances the thermal
stability and solubility of the rigid polymer backbone. .

Then, the sulfur containing diimide-diacid (DIDA) was prepared by condensation
reaction of diamine DAS and trimellitic anhydride. A series of novel organic-soluble
polyamide-imides (PAIs) bearing flexible ether and sulfide links, electron-withdrawing
trifluoromethyl groups and ortho-phenylene units were synthesized from DIDA, by direct
polycondensation with various aromatic diamines in NMP using triphenyl phosphite and

pyridine as a condensing agent in the presence of dehydrating agent (LiCl). The PAIs




were obtained in high yields and possessed inherent viscosities in the range of 0.42-0.95
dL . All of the polymers were amorphous in nature, showed outstanding solubility and
could be easily dissolved in amide-type polar aprotic solvents (NMP, DMAc, and DMF)
and even dissolved in less polar solvents (€.g., pyridine and tetrahydrofuran). They
showed good thermal stability with glass transition temperatures between 195-245 °C,
10% weight loss temperatures in excess of 485 °C, and char yields more than 50% at 700
°C in nitrogen atmosphere. Moreover, these PAIs possessed low refractive indexes (n=
1.57-1.59) and low blrefrmgence (A=0.02) due to the trifluoromethyl pendent groups and

thioether bridged ortho-catenated aromatic rings that interrupt chain packing and increase

free volume.

Second part of this dissertation focuses on proton conducting materials that could be
used at high operating temperatures. Higher operating temperatures are desirable as they
will increase fuel cell efficiency, reduce cost, and simplify the heat management system
Because of sulfonated polyelectrolytes are sensitive to dehydration at elevated
témperatures, research is shifting to alternative protogenic groups, such as phosphonic
acid (-PO;H,) functionalized derivatives.

Organophosphorus compounds, dichlorophenylphosphonic acid diethyl esters (M 3
and M 4) were synthesized through the reaction of dichloro iodobenzenes (M 1 and M 2)
and triethyl phosphite in the presence of NiCl,. Then these compounds were hydrolyzed
to the correspondmg acids (M 5 and M 6) and finally the corresponding potassium salts
(M 7 and M 8) were prepared. They were characterized by elemental analysis, and 'H,
13¢ and 3'P NMR spectroscopies as well as CHN analysis. These monomers were used in
the polymerization reactions for the preparation of the appropriate phosphonated
polyethers. Unfortunately, none of the para- or meta-linked phosphonated estefs, acids,
or bispotassium salts was active enough in the reaction to yield the appropriate polymers.

In continue, aromatic diphosphonate monomers based on hydroquinone were prepared
(M 10, M 11, and M 12). The synthesis of the M 10 monomer carried out in two steps:
the reaction of diethyl phosphate with hydroquinone, and the second step was involved

the rearrangement of the resulting phosphate derivative into hydroxyaryl phosphonate
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with lithium diisopropylamide. Aromatic polyethers or poly(ethér sulfone)s were
synthesized using this hydroxyaryl phosphonate ester or corresponding acid, or
bispotassium salt with decafluorobiphenyl and 4,4'-difluorodiphenyl sulfone. A novel
membrane was prepared from the reaction of phosphonated bisphenol (M 10) and
decafluorobiphenyl. The polymer has moderate molecular weights as indicated by the
inherent viscosity around 0.45 g/dL. End group analysis of '°’F NMR was also used for
the estimation of the number average molecular weight M, (g/mol). The calculated
polymer M,"™M® value was around 28400 g/mol, which corresponds to a block length of n
= 42. The polymer showed outstanding solubility and could be dissolved in amide-type
polar aprotic solvents (e.g., NMP, DMSO, DMAc, and DMF) and even dissolved in less
polar solvents (e.g., THF and ethanol). Flexible, tough, and clear films (20-40 pm in
thickness) were obtained from the casting of appropriate polymer amount in THF, DMF,
or even ethanol. |

The TGA data indicated that P 23 polymer loss around 15 % weights in the range of
200-300 °C, because of the loss of -Et segments. Therefore, it is evidence that
corresponding acid polymer will be thermally stable with no significant weight loss up to
approximately 500 °C. From '"H and 3'P NMR spectrum of P 23 it can be implied that
there was partial hydrolysis in the polymerization reaction in the presence of potassium
carbonate and produced water.

None of the hydrolysis methods (acidic or alkaline) were appropriate to obtain almost
quantitative conversions to the diacid phosphonate M 11.

The use of masked bisohenol may possibly leads to the useful hydrolyzed polymers
(polymerization in the absence of water). Therefore, in the third section, hydroxyaryl

phosphonate ester M 10 was converted into the corresponding biscarbamate M 12.
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