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ABSTRACT
PREPARATION AND OPTIMIZATON PROPERTIES OF
OXYGEN SENSOR

-BY
MOJTABA GHATEE

In the present research cubic/tetragonal zirconia composite solid electrolyte was
prepared by two different processing techniques including solid oxide mixing of 3
mol% yttria stabilized zirconia (3YSZ) and 8 mol% yitira stabilized zirconia (8YSZ),
and also net shape forming. Net shape forming was performed by impregnation of
3YSZ and 8YSZ with yttria/scandia and zirconia solutions respectively. The
microstructure and phase assemblage was investigated by SEM and XRD. The
electrical conductivity of samples was measured by impedance spectroscopy at
different temperatures. Hardness and fracture toughness of samples were investigated
by Vickers hardness indentation method and the mechanical strength was measured
by ring on ring test methods. It was shown that increasing tetragonal phase content of

 samples decreased the electrical conductivity of composite electrolytes at high

temperatures while it was vice versa at low temperatures. In addition increasing the
tetragonal phase content of sample improved mechanical properties of composites. In
general solid oxide mixing was a simple preparation technique while better
combination of electrical and mechanical properties along with core/shell structure
obtained by net shape forming technique. It was found that electrolytes with
conductivity of 0.08 S/cm at 900 °C and mechanical strength and fracture toughness
of respectively 375 MPa and 4.1 MPa m'? can be obtained by addition of 35 wt.%
3YSZ to 8YSZ using solid oxide mixing. However the best combination of
mechanical and electrical was obtained by impregnation of 3YSZ with scandia
solution by which electrolytes with conductivity of 0.12 S/cm at 900 °C and
mechanical strength and fracture toughness of respectively 480 MPa and 4.3MPa m'?
were prepared. It was also found that composite electrolytes had lower activation
energy of electrical conductivity along with higher electrical conductivity at low
temperatures (T<550°C). In all composite samples the grain boundary contribution to
total conductivity was lower with respect to pure constituents which means that
composite effect, which is normally occur in conductor/insulator composites,

. observed in composites of two ionic conductors.
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1. Introduction

1.1. Preface

Zircon has been known as a gem from ancient times. The name of the metal,
zirconium, comes from the Persian word Zargon (golden in colour) which in turn
comes from the two Persian words Zar (Gold} and Gun (Like) (Picconi 1999).
Zirconia, the metal dioxide (ZrO2), was identified as such in 1789 by the German
chemist Martin Heinrich Klaproth in the reaction product obtained after heating
some gems, and was used for a long time bleﬁded with rare earth oxides as
pigment for ceramics (Picconi 1999). Zirconia is a well-known polymorph that
occurs in  three forms: monoclinic (M), cubic (C) and tetragonal (T). (Picconi

1999).

Pure zirconia is monoclinic at room temperature. This phase is stable up to
1170°C. Above this temperature it transforms into tetragonal and then into cubic
phase at 2370°C. During cooling, the tetragonal to monoclinic transformation

takes place in a temperature range of about 100°C below1070°C (Xue 2005).




1170°C 2370°C

m-ZrOy~—77—1t-Z10,

c-Z10,— hquld

Figure 1 shows the unit cell of there polymorph of zirconia and Table 1 and
Table 2 summarized crystallographic characteristic including space group lattice
parameter and theoretical density of these polymorphs in yttria-zirconia and
scandia-zirconia systems respectively (Hanink l2002). It should be noted the lattice
parameters depends on type of dopant used and here the required values which is

'

referred through this work, is presented.

@ )
Figure 1: Unit cell of zirconia polymorph monoclinic (a), tetragonal (b) and cub1c

(c) (Hannink 2000).

-

Table 1: Crystallographic characteristics of various zirconia polymorphs in ZrO2-

Y203 system (Hannink 2002). |

\
Crystal Space Unit cell dimension
structure group @)
a b c a B Y
*Monoclinic ~ P121/C1  5.14422 520969 5.31120 90 99.290 90
Tetragonal P42/NMC 3.6067 3.6067 5.1802 90 90 90
Cubic FM3M 5.14728 5.14728 5.14728 90 90 90

*Pure Zr02




Table 2: Crystallographic characteristics of various zirconia polymorphs in ZrO2-

Sc203 system (Ciacchi 1991).

Crystal Space Unit cell dimension
structure group (?)

: Coa - b: » o C a B -y
Monoclinic P121/C1  5.14422 5.20969 5.31120 90 99.290 9
Tetragonal P42/NMC 3.5965 3.5965 5.1608 90 90 90
cubic FM3M 5.091 5.091 5091 90 90 90
*Pure Zr02 :

The monoclinic phase, which is the most stable phase under normal
atmospheric pressure at room temperature, has limited practical applications since
-its formation during cooling from the high temperature tetragonal phase is
associated with volume expansion (~5 vol.-%), which results in crumbling of the
ceramic components (Evans 1990). However, this tetragonal-to-monoclinic
transformation has a great technological importance for mechanical applications:
since it is the basis for the transformation toughening of ceramic components
which will be discussed later (Kelly 2006). ZrO2 has shown excellent
performance as extrusion dies for‘non-ferrous metals and as tool bits and thread
guides (Schukla 2005). Various other interesting properties of ZrO2 have lead to
its different industrial applications. ZrO2 blades are widely used in cutting tools to
cut Kevlar, magnetic tapes, cigarette filters because of their reduced wear and
erosion characteristics (Tu 1997). As a result of its very high refractive index
close to that of diamond (n = 2.42), ZrO2 has been produced extensively to
manufacture synthetic grade jewels and used in ceramic glazes as an opacifier
(Subbarao 1981). Moreover, ZrO2 has higher thermal stability and acid-base
resistance properties. It is also stable under a reducing atmosphere and photo

irradiation (Picconi 1999). These properties make ZrOZ the most suitable




candidate as a refractory material and as catalyst/catalyst support for
hydrogenation and isomerisation reactions compared with other ceramic oxides
(Ti02, SiO2 and A1203) (Subbarao 1981). Moreover, owing to their high oxygen
ionic conductivity of cubic and tetragonal phases, these high temperature phases
of ZrO2 are useful as éolid electrolytes in oxygen sensors (Zhuiykov 2008,
Garzon 2004, Fergus 2007, Riegel 2002, Ivers-Tiffe’e 2001, -Soimov 2000,
Maskell 2000, Rodrigues 2000, Nafe 2000) and solid oxide fuel cells (Collongues
1979, Appleby 1988, R. Collongues 1979, Minh 1993), operating at lower
temperatures. As a result of their high strength, high fracture toughness, high
hardness, aﬁd high thermal shock resistance, the; cubic or tetragonal ZrO2 is used
as a port liner for combustion engines and wire drawing dies (Subbarao 1981).
The low thermal conductivity together with relatively low coefficient of thermal
expansion allows the use of high temperature polymorphs of ZrO2 (tetragonal and
cubic) in thermal barrier coating (TBC) applications (Piccoﬁi 1999). Good
chemical and dimensional stability, mechanical strength, toughness, coupled with
Young’s modulus in the same order of magnitude as stainless steel alloys are the
origin of the interest in using ZrO2 as a ceramic biomaterial. Currently, zirconia is
used to manufacture ball heads for total hip replacement. More than 300000 ball
heads made of tetragonal zirconia, has been implanted, and only two failures were

reported up to now (Picconi 1999).

The addition of ‘stabilizing’ oxides, like CaO, MgO, CeO2, Y203, to pure
zirconia allows stabilizing high temperature tetragonal and cubic phases at low
temperatures (Picconi 1999). It should be noted that various kind of dopants can

be used as stabilizer including N2, oxide of various elements (Ce, Y, Mg, Sc, La,




Nb, Yb, Ca...). Figure 2 and Figure 3 show phase diagrams of ZrO2- Y203 and
Zr02-Sc203 which are used in the most technologically important fields like
oxygen sensors and fuel cells. According to the type and amount of dopant
various combinations of phases can be prepared. As can be seen various

combination of phases can be stabilized.
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Figure 2: ZrO2-MgO (a) and ZrO2 - Y203 (b) phase diagram (Hannink 2000).
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Table 3 presents nomenclature of various zirconia and zirconia containing

ceramics. Some of these grades which are relevant to this research will be

explained briefly through this chapter.



Table 3: Terminology used describe zirconia and zirconia containing ceramics

(Hannink 2002).

Panel A. Terminology Used to Describe ZrO, and
ZrO,-Containing Systems

DZC Dispersed zirconia ceramics—comprisc a
matcrial in which ZrO, is dispersed in
the matrix to act as a toughening agent

MPZ Monoclinic polycrystalline zirconia—an
agglomerate of m-Z1r0O, grains added to
ceramic matrices to form, after suitable
processing, microcrack-toughened,
high-density refractories

PSZ Partially stabilized =zirconia— gencrally
consisting of a ¢-ZrQO, matrix with a
dispersion of ¢ precipitates

Ca-PSZ

CaQ-PSZ Calcium-cation-doped PSZ-— generally
added as Ca®© in the range 7.5—8.7
mol% CaO—Zr0O, and, for commercial
alloys, 8.4 mol% (4.0 wt%s) has been
most common

Mg-PSZ

MgO-PSZ Magnesium-cation-doped PSZ—gener-
ally added as MgO or Mg,CO,; in the
range 8.5—-10 mol% (—2.8-3.5 wt%)
MgO—ZrO, and, for commercial alloys.
~9.4 mol% MgO has been most com-
mon

TTA Transformation-toughened alumina

TTC Transformation-toughened cceramics—

ccramics whosc mechanical propertics
have been improved through the addi-
tion of a ZrOQ, constituent, generally
culminating in a single phase or parti-
cle/precipitates in a host matrix that
may or may not be ZrO,

TTZ Transformation-toughened =zirconia (or
TZC, toughened zirconia ceramics)—
the groups of ZrO,-matrix ccramics
that encompass the PSZ and TZP sys-
tems

TZP Tetragonal =zirconia polycrystals—a
ZrO,-based cecramic where the matrix
grains are stabilized, generally, to a
single-phase ¢ form at room tempera-
turce (two most common forms of TZP
arc often prefixed with Ce- or CcO,- to
denote ceria-stabilized or with Y-or
Y,05- to denote yttria-stabilized, and a
number in front of the acronym gener-
ally denotes the mole percent of do-
pant)

Y-TZP Yttrium-cation-doped tetragonal zirconia
polycrystals— generally added as Y.,O4
in the range 2-3 mol% Y.,O03;—Zr0O,
(2—3Y-TZP) (—~7—8 wt% Y ,O,—Zr0O,)

ZTA Zirconia toughened alumina

ZTC Zirconia toughened ceramics




