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Abstract  

   With the deregulation of BMS, it is important to obtain rules in order to transfer 

policyholders from one BMS to another. This thesis proposes a solution to this problem. It 

will be shown in this study that an insured who is transferred from a BMS to another one in 

which level will stay in new system. 

   We contributed to the work of Pitrebois et al. (2006) by applying to Iranian Auto Data. The 

aim of this thesis is to show how to develop rules allowing to transfer a policyholder from a 

given BMS to another one.  

   We follow the Norberg method to calculate the relativity premium and use it to obtain 

measure of discrepancy between two systems. The losses considered in this study are the 

standard quadratic loss, exponential loss and LINEX loss functions. By a numerical example 

we show that using exponential loss function and LINEX loss function leads to new levels 

which are lower than the levels created by using quadratic loss functions. Also this thesis uses 

credibility factor based on Payandeh (2010) and obtains it for Poisson-Gamma and Zero-

inflated Poisson gamma distribution under several loss functions. 

We observe that the different metrics we have chosen do not provide extremely different 

results. 

Using LINEX loss function, the levels in which policyholder is situated are reduced. As much 

as 

 

is away from zero, the policyholder with LINEX loss function is transferred to lower 

levels. This means that they will pay lower premiums than when the loss function is 

exponential or quadratic. When a LINEX loss is used, the size of maluses is reduced.  

Keywords: Credibility factor, LINEX loss function, Balance-quadratic loss function, Zero 

inflated Poisson gamma distribution, transition rules     
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Chapter 1

 
Preliminaries   

   In this Chapter, we collect some essential elements for other chapters of this thesis. A 

considerable part of the chapter collected from Bailey (1945, 1950), Bühlman (1967), Varian 

(1975), Lemaire (1979), Willmot (1987), Tremblay(1992), Holtan (1994), Zellner (1994),  

Lemaire (1995), Coene (1996), Ferreira (1997), Denuit & Dhaene (2000), Frangos & 

Vrontos (2000), Press (2003), Morillo & Bermúdez (2003), Pitrebois et al. (2005), Payandeh 

(2010).  

1.1 Bonus-Malus system 

   BMS is a merit-rating technique third party liability automobile insurance used in most of 

Europe, Asia and some Latin American and African countries. Depending on the risks 

allocated to them, the policyholders are divided into a finite number of bonus-malus classes. 

Based on their claims histories, their classes are modified at each renewal. When a rating 

system is used, the amount of premium paid by the insured depends on the rating factors of 

the current period but also on claim history. In practice, a BMS consists of a finite number of 

levels, each with its own relative premium. New policyholders enter to a specified level. 

After each year, the policy goes up or down according to transition rules and to the number of 

claims filed. The premium charged to a policyholder is obtained by applying the relative 

premium associated to his current level in the system. 

   BMS allows to match individual premium to risk and to increase incentives for road safety, 

by taking into consideration the past record. They can be justified by asymmetrical 

information between the insurance company and the policyholders. Indeed, they encourage 

policyholders to drive carefully (i.e., they counteract moral hazard) and respond to adverse 

selection in automobile insurance. Adverse selection occurs whenever the policyholders have 

a better knowledge of their claim behavior than the insurer does, and take advantage of this 

additional information about their driving patterns, known to them but unknown to the 

insurer. Experience rating is a response to adverse selection, by penalizing the more 

numerous claims of those with more dangerous driving patterns. BMS is in general 

independent of the claim amount; a crucial issue for the insured is therefore to make a 

decision whether it is beneficial or not to report small claims (in order to avoid an increase in 
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premium). Small size claims are likely to be defrayed by the policyholders themselves, and 

not to be reported to the company. 

   This phenomenon, known as the hunger for bonus, limits claim handling costs since small 

claims are not reported to the insurer (decreasing the administrative burden). BMS can be 

developed using the theory of Markov Chains. This has already been done by Loimaranta 

(1972), Norberg (1976), Borgan, Hoem & Norberg (1981), Gilde & Sundt (1989). They 

assumed that a BMS can be dealt under the framework of homogeneous Markov Chains.  

Lemaire (1979, 1985, and 1995) developed the model to obtain a financially balanced BMS 

using the expected-values premium calculation principle and the Negative Binomial as the 

claim frequency distribution. Panjer (1987) proposed the Generalized Poisson-Pascal 

distribution (in fact, the Hofmann distribution), which includes three parameters, for the 

modeling of the number of automobile claims. Ruohonen (1987) considered a model for the 

claim number process. This model is a mixed Poisson process with a three-parameter Gamma 

distribution as the structure function and is compared with the two-parameter Gamma model 

giving the Negative Binomial distribution. 

Willmot (1987) compared the Poisson-Inverse Gaussian distribution to the Negative 

Binomial one and concluded that the fits are superior with the Poisson-Inverse Gaussian in all 

the six cases studied by Gossiaux & Lemaire (1981), see also Besson & Partrat (1990). 

Tremblay (1992) used the Poisson-Inverse Gaussian distribution. He discussed an optimal 

BMS considering the quadratic loss function and also using zero-utility premium calculation 

principle. Tremblay (1992) obtained the design of an optimal BMS using the quadratic error 

loss function, the Poisson-Inverse Gaussian as the claim frequency distribution and the zero-

utility premium calculation.  

Holtan (1994) introduced an alternative approach to BMS that eliminates these 

disadvantages. He suggested the use of very high deductibles that may be borrowed by the 

insured to the insurance company. Although technically acceptable, this approach obviously 

causes considerable practical problems. While Holtan (1994) assumed a high deductible 

which is constant for all insureds, and thus independent of the level they occupied in the 

BMS at the claim occurrence time. Lemaire (1995) used the quadratic loss function and 

negative binomial as acclaim frequency distribution for determining the optimal BMS. Coene 

(1996) introduced a financially balanced BMS and he used a quadratic loss function of the 

differences between the premiums for an optimal BMS with an infinite number of classes, 

weighted by the stationary probability of being in a specific class and by imposing variance 

constrain on the system. . Coene & Doray (1996) considered the design of an optimal BMS 
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by minimizing a quadratic function of the difference between the premium for an optimal 

BMS with an infinite number of classes.  

Denuit (1997) demonstrated that the Poisson-Goncharov distribution introduced by Lefèvre 

& Picard (1996) provides an appropriate probability model to describe the annual number of 

claims incurred by an insured motorist. Meng & Whitmore (1999) presented a model which 

employed the Negative Binomial distribution for individual-level claims and Pareto 

distribution as the distribution for claim propensities within the portfolio. Walhin & Paris 

(1999) developed an optimal BMS using a finite Poisson mixture as a claim frequency 

distribution and also using the Negative Binomial and the Poisson-Inverse Gaussian.   

More recently, Frangos & Vrontos (2001) obtained an optimal BMS based both on the 

number of accidents of each policyholder and on the size of loss for each accident that 

occurred.  

   Centeno et al.  (2001) use non-homogeneous Markov Chains to model such system. They 

used open models and explain the open model as close to reality. They said that the closed 

model overvaluates the probabilities of the extreme classes. When the linear scale is used, we 

obtain a smaller premium in all the classes for the open model with expectation of class 1 and 

2, see Ceneto, et al (1999) for more detail. Pitrebois et al. (2005) developed the model 

assuming varying deductibles which changes from each level to the next. In this model, the 

premium correction in the malus zone could be replaced by deductibles because of 

motivating the insured to be careful about risky situation and preventing them leaving the 

insurance company after claim. Combining BMS with varying deductibles presents a number 

of advantages: 1- According to signal theory, insureds choosing varying deductible should be 

good drivers. 2- Even if the insured leaves the company after a claim, he has to pay for the 

deductible. 

    Pitrebois et al. (2006) have argued that it is nonsense to oblige insurance companies to use 

the same bonus-malus scale whenever they used different a priori segments. They try to show 

how to transfer policyholders from a BMS to the other one? For this aim, they used distance 

formula and earn minimum result for each system.  

1.2 Bayesian model 

   Bayesian ideas and techniques were introduced into actuarial science in a big way in the 

late 1960s when the papers of Bühlman (1967, 1969) and Bühlman & Straub (1970) laid 

down the foundation to the empirical Bayes credibility approach, which is still being used 
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extensively in the insurance industry. Because risk classification in insurance involves 

unobserved risk characteristics, Bayesian modeling offers an intellectually acceptable 

approach. Indeed, these characteristics are usually modeled by the introduction of a random 

effect in the classification process. Consequently, a posteriori analysis following claims 

experience is an interesting task because a Bayes revision of the heterogeneity component 

allows estimating more precisely these unobserved characteristics. At each insured period, 

the random effects can be updated for past claim experience, revealing some individual 

information. Bayesian analysis is used to design an optimal BMS with infinite number of 

classes at first. Based on the distribution of the number of claim in the portfolio, the posterior 

claim frequencies are obtained. These claim frequencies are then used to calculate the 

posterior premiums. 

   Bayes theorem is simply a restatement of the conditional probability. Suppose that 

  

is any set of mutually exclusive and exhaustive events, and that events B and 

are of special interest. Bayes theorem for events provides a way to find the conditional 

probability of , given in terms of the conditional probability of given

 

. For this 

reason, Bayes theorem is sometimes called a theorem about inverse probability. Bayes 

theorem for events is given by:  

  

For . 

 

is your personal prior probability of event . It is your degree of belief 

about event

 

prior to your having any information about event

 

that may bear on . 

 

denotes your posterior probability of event 

 

in that it is your degree of belief about 

event 

 

posterior to you having the information about . This equation is a general form of 

Bayes theorem for events. Suppose C denote any event, and . Denote the complementary 

event to C (C and are mutually exclusive and exhaustive). Then, for any other 

event , , Bayes theorem for events becomes:  

  

This is the Bayes Theorem for Complementary Events. 
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Prior and Posterior distribution 

   The prior distribution is a key part of Bayesian inference (see Bayesian methods and 

modeling) and represents the information about an uncertain parameter  that is combined 

with the probability distribution of new data yield the posterior distribution, which is turn is 

used for future inferences and decisions involving .

 

   The key issues in setting up a prior distribution are: 

1- What information is going into the prior distribution? 

2- The properties of the resulting posterior distribution.  

   According to Bayesian rule, we can express posterior probability of certain event H given 

some data with the formula  

 

   The probability of H given the data is called the posterior probability of H. 

The posterior distribution summarizes the current state of knowledge about all the uncertain 

quantities (including unobservable parameters and also missing, latent, and unobserved 

potential data) in a Bayesian methods and modeling).  

1.3 Trajectory 

   New drivers start in level 

 

of the scale. Experienced drivers arriving in the portfolio are 

not necessarily placed in level , but in a level corresponding to their claim history or to the 

level occupied in the BMS used by a competitor. As referred to Denuit et al (2007) the 

trajectory of the insured in the BMS is modeled by a sequence 

 

of random variable 

valued in{0, 1, ..,s}, such that 

 

is the level occupied during the (t+1)-th year, i.e. during 

the time interval (t, t+1). Since movements in the scale occur once a year, the insured 

occupies level 

 

from time t until time t+1. Once the number of claims reported by the 

insured during (t 1, t) is known, this information is used to evaluate again the position of the 

driver in the system. The 

 

obviously depend on the past numbers of claims 

 

reported by the insured.  

 

Where 
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indicates whether at least one claim has been reported in year t. This representation of the 

  
clearly shows that the future trajectory of the insured in the scale is independent of the 

levels occupied in the past, provided that the present level is given.  

1.4 Transition rules  

   The probability of moving from one level to another depends on the number of claims 

reported during the current year. Therefore, we can introduce more formally the transition 

rules which impose the transfer from one level to another level once the number of claims is 

known. If 

 

Claims are reported,   

  

The 

 

are put in matrix from i.e.  

  

Then, 

 

is a 0-1 matrix having in each row exactly one 1. (See Denuit et al., 2007).  

1.5 Transition probability 

   It is assumed that N1, N2, are independent and for example poison distributed with 

parameter . The trajectory

 

will be denoted as { to emphasize the 

dependence upon the annual expected claim frequency. Let P 1 2( ) be the probability of 

moving from level to level

 

for a policyholder with annual mean claim frequency , that 

is, 

 

With clearly, the satisfy 
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   Moreover, the transition probabilities can be expressed using the 

 
introduced above. 

To see this, it suffices to write 

  

   Note that, we have used the fact that 

 

and 

 

are independent (since 

 

depends 

on , so that 

 

   The transition probabilities allow the actuary to compute the probability of any trajectory in 

the scale. Specifically, since the probability that a certain policyholder with expected annual 

claim frequency  is in level 

 

at time 1, ,n is simply the probability of going from 

 

to 

 

via the intermediate levels , we have 

 

   Furthermore, it is enough to know the current position in the scale to determine the 

probability of being transferred to any other level in the bonus-malus scale. Formally, 

 

Whenever 

  

1.6Transition Matrix  

  Further, is the one-step transition matrix, i.e. 

 

   As already mentioned the future level of a policyholder is independent of its past levels and 

only depends on its present level and also on the number of claims reported during the 

present year. In matrix form, we can write 

 

as 

 

provided the 

 

are independent and Poisson ( ) distributed.
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The Multi-Step Transition Probability evaluates the likelihood of being transferred from level 

i to level j in n steps. 

 
   Note that this is the probability that given for any k. The process 

describing the trajectory of the policyholder across the levels is thus stationary. From 

 

It is clear that it includes all the possible paths from i to j and the probability of their 

occurrence. This is the n-step transition probability Therefore, the matrix  

  

is called the n-step transition matrix corresponding to . The following result shows 

that

 

is a stochastic matrix, being the n-th power of the one-step transition matrix 

 

Property 1.1 For all 

  

And hence 

  

See. Denuit et al. (2007) for more details.  

1.7 Poisson distribution 

   Poisson distribution plays prominent roles in modeling discrete count data, mainly because 

of its descriptive adequacy as a model when only randomness is present and the underlying 

population is homogeneous. Unfortunately, this is not a realistic assumption to make in 

modeling many real insurance data sets. Poisson mixtures are well-known counterparts to the 

simple Poisson distribution for the description of inhomogeneous populations. The problem 

of unobserved heterogeneity arises because differences in driving behavior among individuals 

cannot be observed by the actuary. One of the well-known consequences of unobserved 

heterogeneity in count data analysis is overdispersion: the variance of the count variable is 
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larger than the mean. Apart from its implications for the low-order moment structure of the 

counts, unobserved heterogeneity has important implications for the probability structure of 

the ensuing mixture model. 

   The Poisson distribution was discovered by Siméon-Denis Poisson (1781 1840). A Poisson 

random variable is a count of the number of events that occur in a certain time interval or 

spatial area. For example, the number of cars passing a fixed point in a five-minute interval, 

or the number of claims reported to an insurance company by an insured driver in a given 

period. A typical characteristic associated with the Poisson distribution is certainly 

equidispersion: the variance of the Poisson distribution is equal to its mean. Assume 

 

is 

identically independent distributed random variable (iid). And 

 

is distributed as Poisson 

distribution with parameter , so the probability density function is 

 

The moment and the maximum likelihood estimators for parameter would be the mean of 

sample. On the other hand  

 

.  

Poisson-gamma model 

   The simplest random effects model for count data is the Poisson distribution is often 

reasonable description for events which occur both randomly and independently in time. 

The gamma distribution can be used to express the joint distribution in a closed form. The 

reason that why we choose gamma distribution as prior distribution is that: The gamma 

distribution family is a flexible family that allows us to represent any prior knowledge and its 

support coincides with the parameter space of s. Given , the annual numbers of 

claims 

 

is given by a Poisson distribution with parameter .  

 

Superposed to the 

annual claims frequency and . So we have 

 

All the s are assumed to be independent and follow a standard Gamma distribution with 

probability density function: 

 

From this, we conclude that the number of claims of a randomly picked up policyholder from 

the portfolio is Negative Binomial distributed: 
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Multivariate zero-inflated Poisson-gamma 

   Count data frequently over dispersion and excess zeros, which motivates zero-inflated 

count models (Lambert 1992; Greene 1994). Zero-inflated count models offer a way of 

modeling the excess zero in addition to allowing for over dispersion in a standard parametric 

model. Zero inflation arises when one mechanism generates only zeros and the other process 

generates both zero and nonzero counts. A (discrete) random variable 

 

is said to have a 

zero-inflated distribution if it has value 0 with probability , otherwise it has some other 

distribution with P(Y=0)>0. Hence P(Y=0) comes from two sources, and the  sources can 

sometimes be thought of as a structural zero. The most common example of a zero-inflated 

distribution is the zero-inflated Poisson. It has value 0 with probability  else is Poisson ( ) 

distributed. Zero-inflated count data models have generic probability function: 

  

ZIP models can be considered as a mixture of a zero point mass and Poisson distribution and 

where first use to study soldering defects on print wiring boards (Lambert 1992) count data 

may also exhibit a great number of zeros than expected from the Poisson model. The zero 

inflated Poisson (ZIP) model is commonly used in modeling data with excess zero. It is a 

mixture of Poisson and a degenerate distribution at zero. Lambert (1992) used the ZIP in 

modeling a manufacturing process. However, count data usually exhibit the joint presence of 

excess zero counts and over dispersion. In this event, the zero inflated negative binomials 

(ZINB) distribution provides a better fit. . Gupta et al. (1996) introduced zero adjusted 

generalized Poisson distribution. Hall (2000) described the zero-inflated binomial (ZIB) 

regression model and incorporated random effects into ZIP and ZIB models. And Lee et al. 

(2001) generalized the ZIP model to accommodate the extent of individual exposure. See Yip 

& Yau (2005) for an application to insurance claim count data. Yau and Yip presented the 

ZIP, ZINB, zero inflated generalized double Poisson (ZIDP) to accommodate the excess zero 

for insurance claim data   

1.8 Poisson regression 
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   The Poisson (log linear) regression model is the most basic model that explicitly takes into 

account the nonnegative integer-valued aspect of the dependent count variable. In this model, 

the probability of an event count , given the vector of covariates , is given by the Poisson 

distribution: 

  

The mean parameter (the conditional mean number of events in period i) is a function of 

the vector of covariates in period i: 

 

The name log-linear is also used for the Poisson regression model because the logarithm of 

the conditional mean is linear in the parameters: 

 

   The Poisson regression model assumes that the data are equally dispersed- that is, that the 

conditional variance equals the conditional mean. Poisson regression models are generalized 

linear models with the logarithm as the (canonical) link function, and the Poisson distribution 

function.  

1.9 Generalized linear model 

   Generalized linear models (GLM) have been used for actuarial purposes by several authors 

(see, e.g. Haberman & Renshaw (1996) and references therein). In the framework of actuarial 

applications, there are several attempts to use GLM in order to describe the claim frequency, 

the claim size or other characteristics of a portfolio. Generalized linear modeling is used to 

assess and quantify the relationship between a response variable and explanatory variables. 

The modeling differs from ordinary regression modeling in two important respects: 

 

The distribution of the response is chosen from the exponential family. Thus the 

distribution of the response need not be normal or close to normal and may be 

explicitly non-normal.  

 

A transformation of the mean of the response is linearly related to the explanatory 

variables. 

   The insurance company achieves risk classification using generalized linear models 

(Poisson or logistic regressions, for instance). Generalized linear models are important in the 
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analysis of insurance data. With insurance data, the assumptions of the normal model are 

frequently not applicable. 

Whenever the counts are small, which is typically the case in automobile insurance, the 

Normal approximation is poor and fails to account for the discreteness of the data. Normal 

regression should be avoided in this case. Generalized linear models provide an appropriate 

framework for the analysis of count data. A linear model for the logarithm of the s is often 

used in actuarial science (see e.g. Pinquet, 1997). This provides a regression model for count 

data analogous to the usual normal regression for continuous data According to standard 

methodology of generalized linear models, the logarithmic function is also the natural link for 

the Poisson distribution (see e.g. Dobson, 1990). The general linear model (GLM) is a 

statistical linear model. It may be written as 

 

where Y is a matrix with series of multivariate measurements, X is a matrix that might be a 

design matrix, B is a matrix containing parameters that are usually to be estimated and U is a 

matrix containing errors or noise. The errors are usually assumed to follow a multivariate 

normal distribution. If the errors do not follow a multivariate normal distribution, generalized 

linear models may be used to relax assumptions about Y and U. In a GLM, each outcome of 

the dependent variables, Y, is assumed to be generated from a particular distribution in the 

exponential family, a large range of probability distributions that includes the normal, 

binomial and Poisson distributions, among others. The mean, , of the distribution depends 

on the independent variables, X, through:  

 

where E(Y) is the expected value of Y; X

 

is the linear predictor, a linear combination of 

unknown parameters, ; g is the link function. The link function provides the relationship 

between the linear predictor and the mean of the distribution function. 

1.10 Loss functions 

   Whatever the model selected for the number of claims, the a posteriori premium correction 

is derived from the application of a loss function. The standard choice is a quadratic loss. In 

this case, the credibility premium is the function of past claim numbers that minimizes the 

expected squared difference with the next year claim number. It is well known that the 

solution is given by the a posteriori expectation. 
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   The penalties obtained in a credibility system calling upon a quadratic loss function are 

often so severe that it is almost impossible to implement them in practice, mainly for 

commercial reasons. In order to avoid this problem, some authors have proposed resorting to 

an exponential loss function: the hope is that breaking the symmetry between the overcharges 

and the undercharges leads to reasonable penalties. This reduces the maluses and the bonuses, 

and results in a financially balanced system. 

Early references about the use of this kind of loss function include Ferreira (1977) and 

Lemaire (1979). Adopting the semiparametric model proposed in Young (1997, 2000) but 

considering that the piecewise linear function has better characteristics in simplicity and 

intuition than the kernel, Huang, Song & Liang (2003) used the piecewise linear function as 

the estimate of the prior distribution and to obtain the estimates for the credibility formula. 

Young (1998a) uses a loss function that is a linear combination of a squared-error term and a 

second-derivative term. The squared-error term measures the accuracy of the estimator, while 

the second-derivative term constrains the estimator to be close to linear. 

Young (2000) resorts to a loss function that can be decomposed into a squared-error term and 

a term that encourages the credibility premium to be constant. This author shows that by 

using this loss function, the problem of upward divergence noted in Young (1997) is reduced. 

See also Young (1998b). Young (2000) also provides a simple routine for minimizing the 

loss function, based on the discussion of De Vylder in Young (1998a). See also Young & De 

Vylder (2000), where the loss function is a linear combination of a squared-error term and a 

term that encourages the estimator to be close to constant, especially in the tails of the 

distribution of claims, where Young (1997) noted the difficulty with her semiparametric 

approach. The quadratic loss function is by far the most widely used in practice. The results 

with the exponential loss function are taken from Bermúdez, et al. (2001).  

Morillo & Bermúdez (2003) used an exponential loss function in connection with the 

Poisson-Inverse Gaussian model. Other loss functions can be envisaged.   

LINEX loss functions 

   One advantage of using the squared or exponential loss function is that is penalizes 

overestimation or underestimation. Overestimate of a parameter can lead to more or less 

severe consequences than underestimation. The use of an asymmetrical loss function, which 

ascribes greater importance to overestimation or underestimation, can be considered for the 
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estimation of the parameters. The asymmetric LINEX loss function put forth by Varian 

(1975). The loss function is defined, for b>0 and a 0, by: 

 
This loss function is depicted in figures 1-1a and b. for , the loss is zero. For a>0, 

the loss declines almost exponentially for ( , and rises approximately linearly when 

( . For a<0, the reverse is true. It is straightforward to find that the Bayes estimator 

is given by 

  

Figure 1-1   (a) LINEX loss function for a>0    (b) LINEX loss function for a<0  

   In decision theory, LINEX loss function (with a>0) is popular loss which consider in 

situation that overestimation is more considerable than underestimation. Meanwhile, in the 

reverse situation (underestimation is more considerable than overestimation) LINEX loss 

function given by a<0 is more applicable loss. (Press, 2003)) 

   Gomez, et al. (2006) described the Bayes premiums in a BMS are obtained using weighted 

LINEX loss function under the Poisson-Gamma model. They believe that the LINEX loss 

function can be applied in BMS because it solves the problem of overcharges.  

Balance loss function 

    Balance loss function is the form  

, ,
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That  is an arbitrary loss function, while 

 
is a chosen a priori target estimator of , 

obtained for instance from the criterion of maximum likelihood estimator, least-square, or 

unbiasedness among others. We consider here Bayes estimation under balanced loss function 

, , as in previous formula. When w=0, we simply use 

 
instead of , , unless we want 

to emphasize the role of .

  

1.11 Credibility 

   Credibility theory is the art of combining different collection of data to option and accurate 

overall estimate. It provides actuaries with techniques to determine insurance premiums for 

contacts that belong to a (more or less) heterogeneous portfolio, where there is limited or 

irregular claim experience for each contract but ample claim experience for the portfolio.  

Keffer (1929) initially suggested using a Bayesian perspective for experience rating in the 

context of group life insurance. Subsequently, Bailey (1945, 1950) showed how to derive the 

linear credibility form from a Bayesian perspective as the mean of a predictive distribution. 

Bühlmann (1967) described a fundamental model containing latent (unobserved) effects that 

are common to all claims from a risk class. Bühlmann called these structure effects.

 

Miller & Hickman (1975) examined credibility in the context of aggregate loss distributions. 

Pinquet (1997) was also interested in automobile claims; he considered collision claims 

arising from two lines, at fault and no fault coverage. Both of these papers assumed 

parametric distributions for the claims number and amount distributions and used Bayesian 

techniques to develop estimators. 

Credibility theory can be seen as a set of quantitative tools that allows the insurers to perform 

experience rating, that is, to adjust future premiums based on past experience. In many cases, 

a compromise estimator is derived from a convex combination of a prior mean and the mean 

of the current observations. The weight given to the observed mean is called the credibility 

factor (since it fixes the extent to which the actuary may be confident in the data). Credibility 

theory has a long history in actuarial science Bühlmann s basic model formulation extends 

readily to encompass a large class of models for a review that is oriented towards linear 

regression and longitudinal data models (Frees, Young & Luo (1999)). To account for the 

entire distribution of claims, a common approach used in credibility is to adopt a Bayesian 

perspective.  

   Credibility theory is a branch of actuarial science. It was developed originally as method to 

calculate the risk premium by combining the individual risk experience with class risk 


