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Abstract

Second Virial Coefficients of Alkali Metals from Diatom Fractions and
Assessment of ISM EOS by Real Data
BY

Mahmud Sanchooli

In this work, the calculation of mean second virial coefficients

(By)of alkali metals by using data on diatom fractions at pressure

107 bar is reported. A corresponding states description of the alkalis is
followed in terms of reduced second virial coefficients versus the new
reduced temperature T :T*(T;y P m ,A) where, T is the absolute
temperature, y ., andp ., are the surfuce tension and liquid density at
melting temperature, respectively. The de Boer constant A accounts for the
quantum cffects that arc highly essential in physical properties especially of
the lighter metals.

We use the calculated second virial coefficients to apply the Ihm-
Song-Mason (ISM) equation of state (EOS) to molten alkali metals. Two
other temperature dependent coefficients a and bof the EOS, are
calculated by integration using the Rydberg potential function, to remade
the lack of Boyle volume requested by the present procedure. The
perturbation scheme of ISM  EOS has considered a small perturbation and
thus to bring the highly attractive polarizable alkali metals in the ISM
regime a cofactor is applied by normalizing the potential well-depth of
metals to the corresponding nobles.

Application of ISM EOS to molten alkali metals by our method is
theoretically advantageous in that we have used the real data. It reproduces
the liquid densities within <10% of the experimental values. The results

suggest that ISM EOS is applicable to alkali metals within 250-300 K
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around the boiling temperature, and is likely to report an internal conversion

in liquid alkali metal close to their boiling temperature.
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Chapter One

Introduction

1-1. Theory of Sccond Virial Coefficient

An equation of state of a gas merely gives a mathematical relation
among the pressure, volume, temperature, and number of moles (P, V, T, n)
at equilibrium. Such a relation does not have to be expressed in the form of
an equation, of course, and sets of graphs or tables of numerical values are
often used, especially in practical work. The simplest and best known

equation of state is that for perfect gas
Pv = RT (1.1.1)

where v = V/n is the molar volume and Ris a universal gas constant. Real

gases and liquids exhibit deviation from this equation, but, as farasis
known, all gases approach perfect gas behavior in the limit of very low
density.  This important empirical fact is the basis for the precise
measurement of the absolute temperature, T.

Many modifications of the perfect-gas equations of state have been
proposed in order to secure better representations of the P-V-T properties of
real pases. Indeed, new equations of state are proposed and currently
equations of state for condense fluids are in progress. Empirical and semi-
empirical equations of state are a gencral subject of equilibrium
thermodynamics. Out of all the equations of state that have been proposed,

the following equation expresses the deviations from the perfect-gas

equation as an infinite series in the density p,

Pv 2 3
——=1+B,p+Cp“+Dp” +..,, 1.1.2
T 2p+Cp” +Dp (1.12)




where p=l/v, and B,, C, D,..., arecalled second, third, fourth,..., virial
coefficients, respectively. The virial coefficients depend on the temperature
and on the nature of the gas under consideration, but are independent of
density or pressure. The virial equation of state is sometimes written as a

series in the pressure instead of density,

PV g ' 1

Y ~1+B,P+CP2+DP? +.. (1.1.3)
RT

this series is mathematically cquivalent to the density series, and the
coefficients of the series are uniquely related to each other. The first few

relation arc:

B, =RTB,,
2.~ o 2
C=RT)}(C +B),
ST (1.1.4)
D =(RT)*(D +3B,C +B;),

E=RT)*(E +4DB, + 6C'B’22 r2c”+8™ |

It may seem surprising that the virial equation of state should be
singled out for such special attention. Considered solely as an empirical
equation, it would not deserve so much attention, since it undoubtedly has
important limitations, from this point of view. For instance, the
convergence of the series is not very good except at moderately low
densities, as seems reasonable from the form of the expansion, and indeed
there is some experimental evidence that series diverges at high densities.
Furthermore, at high densities many terms of the series must be included to
obtain satisfa-tory accuracy, and this means that many parameters (the virial
coefficients) have to be determined experimentally.

The reason for the special importance of the virial equation of state is

that it is the only equation of state known which has a thoroughly sound




theoretical foundation. There is a definite interpretation for each virial
coefficient in terms of molecular properties. The second virial coefficient
represents deviation from perfection corresponding to interactions between
two molecules, the third represents the deviation corresponding to
interactions among three molecules, and so on.

Thus the virial equation of state forms the connection between
experimental results and knowledge of molecular interactions. If it was not
for the fact that the virial coefficients form a link between the macroscopic
and microscopic points of view, work on the P-V-T properties of gases
would have little interest aside from some rather obvious practical
applications. Moreover, statistical mechanical theories of dense fluids and
of phase transitions are usually expected to be also applicable in the dense
region where the virial equation of state is valid, and virial equation of state
thus furnishes an important check on many proposed theories.

Other equations of state have a more or less empirical basis, and their
adjustable parameters therefore yield little or no molecular information.
Furthermore, they are valid only in the regions for which empirical data
have been fitted, and extrapolaticn outside of such regions is very risky.
When extrapolation is necessary, it is better to use an equation with a sound
theoretical foundation.

The major importance of the virial equation of state lics not in any
small advantage it may have for extrapolation, however, but rather in its
theoretical connection with molecular interactions, in particular with the
forces between molecules. There are many macroscopic properties of
matter which depend strongly on inter-molecular forces. For some of these,
such as the virial coefficients of dilute gases, and some of properties of
simple crystals, the dependence on inter-molecular forces is sufficiently well
understood for us to proceed with some confidence in either direction from
experimental measurement of properties to the calculation of inter-

molecular forces, or from knowledge of inter-molecular forces to the
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calculation of the macroscopic properties. For other properties, such as the
equation of state and transport properties of dense gases, or the properties of
liquid and complicated solids, theoretical progress may depend to a
considerable extent on independent knowledge of inter-molecular forces, for
which we must turn to experimental measurement on the well understood
properties.

To summarize, the importance of the virial equation of state lies in its
theoretical connection with the forces between molecules. These forces can
be considered the basic unifying element connecting a host of widely
different properties.

It thus bccomes unnecessary to mcasure all of these properties
extensively. ~ Making only enough measurement would be needed to
determine the force law with reasonable precision, and then the rest of

properties can be calculated.

1-1-2. Theoretical Background

Attempts to devise equation of state which would be important over the
perfect-gas equation is continuing at the present. The form of the virial
equation of state is certainly consisting as it does of an expansion in powers
of the density, and there are plenty of precedents in mathematics and
theorctical physics for the expansion of an unknown function as a power
series. Thus it is not surprising that equation of state of the virial form were
suggested empirically before rigorous theoretical derivations were

developed.  Thiesen, who calculated values of B, and C from Regnault’s

P-V-T measurements [1], proposed an infinite series expansion of the form
of (1.2) as early as 1885. The major development, however, came in 1901

from Kamerlingh Onnes [2], who wrote the equation in the polynomial form

pv:A+B—+C—2+»D7+~E?+% (1.1.5)
vV v \% \ A
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and suggested the name virial coefficients. If v in (1.1.5) is in some form of
molar units, then A must be the same for all gases and be proportional to T.

Kamerlingh Onnes changed the equation (1.1.5) into reduced form,
using critical constants, and gave an extensive discussion of the virial
coefficients from the standpoint of the principle of corresponding states. (A
modern discussion of virial coefficient along similar lines has been given by
Guggenhiem [3].)

Note that the odd powers of (1/v), other than the first, have been
omitted from (1.1.5). This omission was simply an empirical curvefitting
device. A number of variations in the form of the equation tried by
Kamerlingh Onnes. Theory indicates that all powers should be included.

An important point by Kamerlingh Onnes emphasized that the
coefficients determined by fitting a polynomial like (1.1.5) to cxperimental
measurements would not be the same as the infinite series.

To emphasize this point, he wrote the infinite series as

Pv=A+ B() + () +..+ N(<)

n

5 (1.1.6)
v \% \Y%

and suggested that the name “virial coefficients” be reserved for B(),

C(o0) , etc. The values of B", C", of (1.1.5) might be good

approximation to B(o0) and C(c0) but the coefficients D", E“, F would
be entirely different from the corresponding coefficients in (1.1.6), and he
suggested that the name virial coefficients would be more appropriate for
the linear coefficient of the polynomial.

The quantity A is the same in both Eqs (1.1.5) and (1.1.6). and is
obviously equal to RT when v is expressed in units of volume per mole. If

(1.1.6) is written as




