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ABESTRACT
WEAKLY REGULAR RINGS

BY
N. KHAJVAND. JAFARI

Regular rings were invented in 1936 by von Neumann. Kaplansky
in 1970 made the following conjecture: The ring R is von Neumann re-
galar if and only if R is semiprime and each prime factor ring of R is von
Neumann regular. Snider in 1974 by an example showed that the Ka-
plansky’s conjecture can not be true in general. It is stablished that the
necessary and sufficient condition for kaplansky’s conjecture to hold is
"the union of any chain of semiprime ideals in R is semiprime”. Weakly
rgular rings were invented by Ramamurti in 1973. It is stablished that
the kaplansky’s improved conjecture is hold for weakly regular rings.

Reduced P. P. rings were studied by Hattori in 1960, it is stablished
that each reduced weakly regular ring is a right and left P.P. ring, but
the converse is not true. Goodearl in 1979 proved that the maximal
right quotient ring of a strongly regular ring is still strongly reguler.
But our arguments involve the existence of a simple non-ore domain
that shows that the Goodearl’s theorem is not true for weakly regular

rings, and also in these rings R, may not exist for a prime ideal P.
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CHAPTERI
INTRODUCTION

Throughout this dis;sertation , all rings are associative and have identity
unless we state. J(R) and Z(gR) denote respectively the Jacobson rad-
ical and the left singular ideal of a ring R .For any subset X of R let
r(X) = {a € R|Xa =0} and ann(X) = {a € R|Xa = aX =0}, also we
denote N* = N U {0}.

1.1 Categories

Definition 1.1 A category is a class C of objects (denoted A, B,C,...)
togethere with (i) a class of disjoint sets, denoted hom(A,B), one for each
pair of objects in C; (an el_en?ent f of hom(A,B) in cql{fzd‘il mm'ph@mm
from A to B and is denoted by f : A — B) such that (u)&ga‘gi-gmplc&i -

(A,B,C) of objects of C a fanction hom(B, C)xhom(A, B) — hom(A,C)

-

(for morphisms f : A — B,g : B — C this function is written by
(9, f)—> gof and go f: A — C is called the composite of f and g); all
subject to the two azioms: (1) Associativity. if f: A — B,g: B—C,
h:C — D are morphisms of C thenho(go f) =(hog)o f.

(2) Identiiy. For each object B of C there erists a morphismlg: B - B
such that for any f: A — B.g: B— C, lgof = f and golg = g.




Definition 1.2 A concrete category is a category C togethere with a
function o that assigns to each object A of C a set o(A) (called the
underlying set of A) in such a way that:

(i) every morphism A — B of C is a function on the underlying sets
o(A) — o(B);

(ii) The identity morphsim of each object A of C is the dentity function
on the underlying set o(A) (iii) Composition of morphisms in C agrees

with composition of functions on the underlying sets.

Example 1.1 The categroy of groups equipped with the function that
assigns to each group its underlying set in the usual sense is a concrete

category.

Definition 1.3 Let F be an object in a concrete category, X a‘iﬁ’oﬁempty
set and i : X — F a map(of sets). F is free on the set X provided that
for any object A of C and map(of sets) f : X — A, there exists a unique
morphism | of C such that f: F — A, and fi= f.

1.2 Modules

Definition 1.4 A right R-module is an abelian group M together with
a map M x R — M written (z,r) — zr such that for all z,y € M and
r,r1,m € R:

(i) (t+y)r=ar+yr

(ii) o(ry + ry) = zry + 273

(i11) z(riry) = (zr)re

if R has an identity elemant 1p and

i) zlp = z, then A is said to be a unitary right R-module. We denote




Mg for the right R-module M. Simlarly a left R-module will be defined.
Let M be a right R-module. A subset L of M is a submodule of M if L
is an additive subgroup of M and x € L,r € R, implies that zr € L, we
denote L < Mg for this.

Definition 1.5 Let Mr and Npg be R-modules.A map a : Mg — Np
is an R-module homomorphsim if a(z + y) = a(z) + a(y) and a(zr) =
a(z)r for z,y € M,r € R. The homomorphism « is called an R-module
monomorphism if o(z) = a(y) implies that = y for z,y € M and this
is equivalent to Kera = {z € Mla(z) = 0} = {0}. a is an R-module
epimorphism if Ima = {a(z)|z € M} = N and finally o is an R-module

isomorphism if o is both R-module monomorphism and epimorphism.

Definition 1.6 If X is a subset of a module pM over a ring R, then the
intersection of all submodules of M containing X is called the submodule
generated by X. If X is finite and X generates the module B ,then B is
said to be finitely generated. If {Bili € I} is a family of submodules of
M, Then the submodule generated by X = U,., B; is called the sum of
the modules B;.

Theorem 1.1 Let R be a ring ,kM an R-module ,X a subset of M ,
{Bi|i € I} a family of submodules of kM and = € M.Let Rz = {rz|r €
R}

(i) Rz is a submodule of M and the map R — Rz given r v rz is an
R-module epimorphism.

(ii) The submodule C generated by X = {z}(the cyclic submodule gen-
erated by ) is {rz + nz|r € R,n € Z}.If R has an identity and C is

unitary , then C = Rx.




(iii) The submodule D generated by X is

s t
O rizi+ Y njyjls,t € N zi,y; € X,ri € R,nj € Z}

=1 i=1
If R has an identity and M is unitary , then

D={) rizi|ls€ N*,z; € X,r; € R}

1=1

(iv) The sum of the family {B;|i € I} consists of all finite sums b, +
«oo 4+ b;y with by € By .

Proof. See [10,iv.1.5]

Definition 1.7 A pair of module homomorphisms A B 5 Cis
said to be ezxact at B provided that Imf = Kerg.So the sequence

0 — AL Bis ezact if and only if f is an R-module monomorphism.
Let R be a ring , it is clear that R is both right and left R-module.

Definition 1.8 Any right(left) R-submodule of R is called a right(left)
ideal of R.

Theorem 1.2 Let A be a left module over an integral domain R and for
each a € A let O, = {r € R|ra = 0}, then

(1) Oqis an ideal of R for each a € A.

(it) A; = {a € A|O, # 0} is a submodule of A.

proof :Obvious
The submodule A; is called the torsion submodule of A .A is said to

be a torsion module if A = A, and to be torsionfree if A; = 0.




1.3 Free modules

Definition 1.9 A subset X of a left R-module M is said to be linearly
independent provided for distinct z,,-+-,z, € X andr; € R,ryz1 +--- +
raZn = 0 implies that r; = 0 for every i.If M is generated as an R-module
by a set Y then we say that Y spans M.If R has an identity and M is
unitary,then Y spans M if and only if every element of M can be written
as a linear combination riy; +roys+ -+ +rayn(ri € R,yi € Y).A linearly
independent subset of M that spans M is called a basis of M.

Theorem 1.3 Let R be a ring with identity , the following conditions
on a unitary left R-module F' are equivalent :

(i) F has a nonempty basis

(i) F is the internal direct sum of a family of cyclic modules , each of
which is isomorphic as a left R-module to R.

(iii) F is R-module isomorphic to a direct sum of copies of the left R-
module R.

(iv) There exists a nonempty set X and a function 1 : X — F with the
following property :

Given any unitary R-module M and function F' : X — M , there is a
unique R-module homomorphism f : F — M such that fi = f.In other

words ,F is a free object in the category of unitary R-modules.

Proof. See[10,iv.2.1]

Definition 1.10 A unitary module F over a ring R with identity which
satisfies the equivalent conditions of the above theorem ,is called a free

R-module.




1.4 Projective and injective modules

Definition 1.11 Let R be a ring . A right R-module P is called projec-
tive if given any diagram of R-module homomorphisms
P
Lf
AL B -0
with A and B are right R-modules and the bottom row is ezact (that is g
is an epimorphism),there exists an R-module homomorphism f: P — A
such that the diagram
P
hey LS
A S5 B 50
is commutative(that is gh = f).

Proposition 1.1 Every free right module F over a ring R with identity
i1s projective .

Proof. See[10,3.2]

Theorem 1.4 Let R be a ring,the following conditions on a right R-

module P are equivalent : (i) P is projective.

(7i)P is a direct summand of a free right R-module.
Proof. See[17,1.6.1]

Definition 1.12 A right R-module E ts called injective , if given any
diagram of R-module homomorphism
0 - A % B

Lf
E




which A and B are right R-modules and the top row is exact(that is g is
a monomorphism ) ,there exists an R-module homomorphism h: B — E
such that the diagram
0 - A % B
Lf /h

is commutative(that is hg = f).

Proposition 1.2 A direct product of R-modules [1,.; J; is injective if

and only if J; is injective for every i € I.
Proof. See[10,IV.3.7]

Proposition 1.3 Every unitary module A over a ring R with identity

may be embedded in an injective R-module.

Proof. See[9,4.4]

1.5 Tensor products

Definition 1.13 Let G be an abelian group.A mapi: L x M — G where
L is a right R-module and M is a left R-module ,will be called bilinear if
(i) i(z +2',y) = i(z,y) +i(z',y)

(1) i(z,y +¢') = i(z,y) + i(z,¥)

(iii) i(zr,y) = i(z,ry) for each r € R,z,2' € L and y,y' € M.

Definition 1.14 A tensor product of Lr and gRM is an abelian group T

together with a bilinear map i : L x M — T such that for every abelian




group G and bilinear map j : L x M — G , there ezists a unique homo-

morphism o : T — G such that the diagram

T
1/ | a
LxM & G

is commutative(at = j).

Proposition 1.4 If0 — A 4B 5 C — 0 is an ezact sequence

of left modules over a ring R and D s a right R-module , then

PDRAY DR B2¥ DR ¢ —0
R R R

is an ezact sequence of abelian groups.An analogous statement holds for

an ezxact sequence in the first variable.

Proof. See[1,IV.5.4]

Proposition 1.5 If R is a ring with identity and I is a right ideal of R
and M a left R-module ,then

R/IQ M= M/IM
R

Proof. Consider the exact sequence

0—I—R— R/l —0




then

IQM-SRQMLRIQM—0
R R
is exact so B is epimorphism .Therefore

R/IIQ M= M/Kerf = M/Ima = M[/IM

R

Definition 1.15 A left R-module M is called flat if for each ezact se-

quence

0 — Ny <25 Ny 25 Ny — 0

with Ny, Ny, Naare right R-modules ,the sequence

0—-NQMBYNQMZYNRM—0
R R R
1 exact.

1.6 Chain conditions

A module A is said to satisfy the ascending chain condition(ACC) on
submodules (or to be Noetherian) if for every chain A; C Ay C A3 C - of
submodules of A , there is an integer n such that A; = Aqfor all ¢ > n.
A module B is said to satisfy the discending chain condition(DCC) on
submodules(or to be Artinian) if for every chain By 2 B, 2 B3 D -+ of
submodules of B there is an integer m such that B; = Bnfor all ¢ > m.A

ring R is left(right) Noetherian if it satisfies the ascending chain condition




