

Faculty of Chemistry Department of Applied Chemistry

M.Sc. Thesis

Title of the Thesis:

Performance of biological system and advanced oxidation processes (AOP) treating antibiotic production industrial wastewater

Supervisors:

Dr. Ali Akbar Zinatizadeh

By: Zahra Shaykhi Mehrabadi

March 2013

Acknowledgement

I am very grateful to God for his guidance and protection during the writing up of the thesis as well as during my studies and everything that I have done. I would like to thank my supervisor *Dr. Zinatizadeh*. Without the advice and support of *Dr. Zinatizadeh*, this thesis would not have been possible. I would like to thank him for his help, encouragement and patience during this time. His excellent guidance has been absolutely essential for the completion of this thesis. From the very beginning, he has treated me as a peer and a friend, and given me the right amount of freedom and guidance. It has been such a joy to work with him. Over two years, I have learned many many things from him – I learned to truly appreciate high quality in research, I learned many technical skills and I even learned from him how to improve my technical writing.

I would never have started or completed this work if I didn't have a loving family to encourge me and keep me going. Words cannot express my thanks. Thank you very much!

I am particularly grateful to my friends in all labs in the chemistry of faculty.

Abstract

In this study, two advanced oxidation processes including UV/O₃/H₂O₂ and photocatalytic oxidation (TiO₂) processes for the treatment of synthetic amoxicillin wastewater (SAW) were examined. In part one (UV/O₃/H₂O₂ process), in order to investigate the effects of influential variables on the process performance, four independent factors involving two numerical factors, initial H₂O₂ concentration and initial pH, and two categorical factors, ozonation and UV irradiation, were selected. The process was modeled and analyzedusing response surface methodology (RSM). The region of exploration for the process was taken as the area enclosed by initial H₂O₂ concentration (0-20 mM) and initial pH (3-11) boundaries. For two categorical factors (ozonation and UV irradiation), the experiments were performed at two levels (with and without application of each factor). The response surface methodology (RSM) used in the present study was a general factorial design. In order to analyze the process, two dependent parameters (COD removal and BOD₅/COD ratio) as the process responses were studied. The variables had a synergistic effect on the response. Maximum COD removal efficiency was obtained at H₂O₂ concentration 20 mM at initial pH 11. As a result, O₃/ H₂O₂ system at pH=5 showed better performance in terms of BOD₅/COD ratio (0.40), although COD removal was 10% under this condition. From the HPLC chromatograms, complete degradation of amoxicillin was achieved. The photocatalytic (TiO₂) oxidation process was also analyzed and modeled with three numerical independent factors i.e. initial CODconcentration, initial pH and reaction time using RSM. The region of exploration for the process was taken as the area enclosed by initial COD concentration(400-2000 mg/l), initial pH (3-11) and reaction time (20-240 min) boundaries. The RSM used in this stage was a central composite face-centered design (CCFD). As a result, initial COD showed different impactat different pH on the COD removal efficiency. Maximum COD removal efficiency was 20% at COD_{in} of 400 mg/l and reaction time 240 min while maximum specific COD removal rate (SRR) was found to be 860 mg COD_{removed}/g cat.h at reaction time of 30 min and COD_{in} 2000 mg/l. Maximum BOD₅/COD ratio was modeled about 0.44 at the conditions with COD_{in} 2000 mg/l and reaction time 30 min. The trend of changes in the ratio was match with the results obtained for COD removal efficiency. The photocatalytic process induced by O_3 and O_3/H_2O_2 showed COD removal efficiencies of 53 and 58%, respectively after 240 min. BOD₅/COD ratio was also determined to be 0.48 and 0.42, respectively for the conditions with O_3 and O_3/H_2O_2 . Photocatalytic process with regularsequences equence regeneration by aeration could achieve 38% COD removal efficiency. BOD₅/COD ratio was also improved to 0.44. Baffled activated sludge (BAS) was also examined treating SAW. Two independent variables (COD_{in} and MLVSS) were investigated and the process was modeled and analyzedusing response surface methodology (RSM). From the results, the ratio of food to microorganism (F/M) was found to be the most important factor for the process control. The F/M ratios less than 0.4 g COD_{in}/g VSS.d, COD removal efficiency was decreased. Maximum removal efficiency (89 %) was determined at MLVSS and CODin of 4800 and 2000 mg/l, respectively. Kinetic coefficients (Y and K_d) was determined 0.0815 g VSS_{produced}/g COD_{rem} and 0.009 d⁻¹, respectively.

Content		
Chapter 1; Introd	uction	1
1.1 Industrial wastewaters		
1.2 Antibiotic industrial wastewater		3
1.3 Sources of an	ntibiotics in the environment	7
1.4Antibiotic wa	astewater: Occurrence in the environment	8
1.5Environmenta	al standards of effluent discharge	9
1.6Current antib	iotic treatment system	9
1.7Problem state	ement	10
1.8Research obje	ectives	12
1.9Scope of stud	ly	12
1.10 Organizatio	on of Thesis	13
Chapter 2; Litertu	ıre Review	15
2.1 Introduction		16
2.2Conventional	Oxidation Processes	16
2.3 Advanced O	xidation Processes (AOPs)	16
2.3.1 Ozonati	on	17
2.3.2 Fenton and photo-Fenton		19
2.3.3Photo ca	italyst	20
2.4 Photo catalys	st Reactor (PCR	26
2.4.1 Effects	of important variables on performance of the photo catalytic	27
oxidation		
2.4.1.1	Light intensity distribution	29
2.4.1.2	Effect of dissolved oxygen	29
2.4.1.3	Effect of feed flow rate	30
2.4.1.4	Effect of contaminant concentration	30
2.4.1.5	Effect of TiO ₂ load	30
2.4.1.6	Effect of light wavelength	31
2.4.1.7	Effect of irradiation time	31
2.4.1.8	Effect of air flow rate	32
2.4.1.9	Effect of temperature	32
2.4.1.10 E	ffect of pH	32
2.5 Biological tr	eatment processes	33
2.5.1 Suspended Growth Bioreactors		33
2.5.2Attached growth processes		36
2.5.3Environmental & operational factors affecting the biological process		36
2.5.3.1 Ter	mperature	36
2.5.3.2 Foo	od to Microorganism Ratio (F/M)	37
2.5.3.3 Org	ganic loading rate (OLR)	37
2.5.4 Applica	tion of biological treatment on antibiotics' removal	38
2.6 Process modeling and optimization		40

Table of Content

2.6.1Response Surface Methodology (RSM)	40
2.6.1.1 Central Composite Design (CCD)	42
2.6.1.2 Graphical Presentation of the Model Equation and Determination	44
of Optimal Operating Conditions	
2.7 Kinetic evaluation	45
2.7.1Mass balance-based model	45
Chapter 3; Materials and Methods	47
3.1Chemicals and reagents	48
3.20verall chart of experiments	49
3.3 Wastewater preparation	49
3.4 Advanced oxidation processes (AOP); Oxidation by $(O_3/UV/H_2O_2)$	51
3.4.1Experimental Setup	51
3.4.2Advanced Oxidation Prosess (AOP'R) Operation	51
3.4.3Experimental Design	53
3.5 Advanced oxidation processes (AOP); Photocatalytic oxidation by TiO_2	55
3.5.1Experimental set-up	55
3.5.2 Photocatalyst oxidation reactor (PCR) operation	55
3.5.3Experimental Design	56
3.5.4Photocatalyst process induced by O3 and O_3/H_2O_2	57
3.5.5Photocatalytic process with regular periodic regeneration	58
$3.5.6 \text{TiO}_2$ -coated quartz tubes	59
3.5.6.1 Coating procedure	59
3.5.6.2 Characterization of TiO ₂ coated on quartz tubes	59
3.6 Biological treatment process; Baffled activated sludge (BAS)	62
3.6.1 Bioreactor set-up	62
3.6.2Wastewater Preparation	65
3.6.3Seed Sludge Preparation	65
3.6.4Bioreactor Operation	65
3.6.5Experimental Design	66
3.6.6Kinetic study	67
3.7 Analytical Methods	67
3.7.1 Water quality parameters measurements	67
3.7.2Measurements of ozone	71
3.7.3Measurement of organic contents	72
Chapter 4; Result and Discussion	73
Part One; Advanced Oxidation Processes (O ₃ / UV/ H ₂ O ₂)	75
4.1 AOP (UV/O3/H2O2) for treating SAW	76
4.1.1Statistical analysis of the model developed	76
4.1.2Process performance of AOP (UV/O3/H2O2) treating SAW	78
4.1.2.1 COD removal	78
4.1.2.2 BOD ₅ /COD ratio	91

Part two; Advanced oxidation processes (AOP); Photocatalytic oxidation by 96

TiO ₂	
4.2 Photo catalyst process treating SAW	97
4.2.1Process performance	97
4.2.1.1 Statistical analysis	97
4.2.1.2COD removal	100
4.2.1.3 Specific COD removal rate (SRR)	108
4.2.1.4 BOD ₅ to COD ratio	109
4.2.1.5 Final pH	111
4.2.2 Photocatalyst process induced by O ₃ and O ₃ /H ₂ O ₂	113
4.2.3Photocatalytic process with regular periodic regeneration	114
Part three; Biological treatment process; Baffled Activated Sludge (BAS) 4.3 Performance of baffled activated sludge (BAS) system for treating SAW	116 117
4.3.1Process analysis and modeling	117
4.3.1.1 COD removal	119
4.3.1.2 Specific substrate utilization rate (U)	121
4.3.1.3 Biomass washout	124
4.3.1.4 Sludge volume index (SVI)	126
4.3.2 Performance of the BAS system treating other new antibiotics	127
Chapter 5; Conclusion	129
Chapter 6; References	132

List of Figures

Figures		Page
Fig. 1-1	Origin and principal contamination routes of human and veterinary	
	antibiotics	8
Fig. 2-1	Schematic diagram illustrating the principle of TiO ₂ photo catalysis	22
Fig. 2-2	Schematic of a typical SBR process sequence	35
Fig. 2-3	Three types of central composite designs for two factors, from left to	
	right: Rotatable, Face-centered, Inscribed	42
Fig. 2-4	Central composite faced-centered design with two variables	44
Fig. 3-1	Flowchart of overall experimental activities	50
Fig. 3-2	Amoxicillin (C ₁₆ H ₁₉ N ₃ O ₅ S, 365.4g/mol)	49
Fig. 3-3	Laboratory-scale experimental set-up for advanced oxidation reactor	
	(O ₃ /UV)	52
Fig. 3-4	Laboratory-scale experimental set-up (a) photocatalytic reactor (PCR,	
-	(b) cylindrical configuration of TiO ₂ coated quartz tubes	56
Fig. 3-5	Schematic diagram of the experimental set-up; Photocatalytic ozonation	
C	system	58
Fig. 3-6	(a) AFM, (b) BET, and (c) SEM images of nano TiO ₂ , respectively	62
Fig. 3-7	The schematic diagram of the baffled activated sludge (BAS) setup	64
Fig. 3-8	The schematic drawing of the laboratory-scale BAS, bioreactor set-up	
8	used in this study	64
Fig. 3-9	The schematic of DO meter and turbidity meter	68
Fig. 4-1	The fate of COD content.	74
Fig. 4-2	Actual vs. predicted values of COD removal.	77
Fig. 4-3	Three dimensional graphs for COD removal as a function of pH and	
8	H_2O_2 at (a) without O_3 and UV. (b) with UV and without O_3 . (c) with O_3	
	and without UV, and (d) with O_3 and V	79
Fig. 4-4	Interactive effect of H_2O_2 concentration-Ozone on the COD removal	
	without UV irradiation at (a) pH 3 (b) pH 7 and (c) pH 11	84
Fig 4-5	Interactive effect of $H_2\Omega_2$ concentration- Ω_2 one on the COD removal at	01
- 15, 1-0	(a) $nH 3$ (b) $nH 7$ and (c) $nH 11$ with UV irradiation	86
Fig 4-6	Effect of various H_2O_2 concentrations on degradation of AMV as a	00
r 1g. 4-0	Effect of various H_2O_2 concentrations on degradation of AMA as a	

	function of reaction time	87
Fig. 4-7	Interactive effect of initial pH-H ₂ O ₂ concentration on the COD removal	
	at (a) without O_3 and UV, (b) with UV and without O_3 , (c) with O_3 and	
	without UV, and (d) with O ₃ and UV	88
Fig. 4-8	Effect of various initial pH on COD removal as a function of reaction	
	time at different oxidation conditions	90
Fig. 4-9	Interactive effect of ozonation-UV irradiation on the COD removal at	
	maximum H_2O_2 concentration and (a) pH= 3, (b) pH= 7 and (c)	
	pH=11	91
Fig. 4-10	COD fractionation for the raw and treated samples and run no. (1-5), 1)	
	pH= 5, H ₂ O ₂ = 10, O ₃ , 2) pH= 5, H ₂ O ₂ = 10, UV, 3) pH= 11, H ₂ O ₂ = 20,	
	UV, 4) pH= 7, H ₂ O ₂ = 5, O ₃ & UV, 5) pH= 11, H ₂ O ₂ = 20, O ₃ & UV is	
	present in Table. 4-3	93
Fig. 4-11	HPLC chromatograms for 1) pH= 5, $H_2O_2= 10$, O_3 , 2) pH= 5, $H_2O_2= 10$,	
	UV, 3) pH= 11, H ₂ O ₂ = 20, UV, 4) pH= 7, H ₂ O ₂ = 5, O ₃ & UV, 5) stock	
	SAW is present in Table 4-3	95
Fig. 4-12	Predicted vs. actual values plots for (a) COD removal, (b) SRR, (c)	
	BOD ₅ /COD, (d) final pH	100
Fig. 4-13	Three dimensional graphs for COD removal as a function of $\ensuremath{\text{COD}_{\text{in}}}$ and	
	reaction time at different pH; (a) 3, (b) 7 and (c) 11	102
Fig. 4-14	HPLC Chromatogram for (a) raw SAW, (b) treated SAW after 30 min	
	under COD_{in} 2000 mg/l and initial pH 11 and (c) treated SAW after 240	
	min under COD_{in} 2000 mg/l and initial pH 11. (AMX peak, time= 4.05	
	min)	103
Fig. 4-15	Effect of initial pH and COD_{in} on the COD removal efficiency at	
	reaction time 30 min; (a) three dimensional graph and (b) interaction of	
	COD _{in} -pH	105
Fig. 4-16	(a), (b) Three dimensional graphs for SRR as a function of $\ensuremath{\text{COD}_{\text{in}}}$ and	
	reaction time at pH 3 and 11, respectively.(c), (d) Interactive effect of	
	COD _{in} -reaction time on SRR at pH 3 and 11, respectively	109
Fig. 4-17	(a) BOD ₅ /COD as function of COD_{in} and reaction time and (b)	
	Interactive effect of COD_{in} -reaction time on BOD_5/COD at neutral pH	111
Fig. 4-18	Three dimensional graph for final pH	112

Fig. 4-19	Performance of the combined processes $(O_2/UV/TiO_2, O_3/UV/TiO_2$ and		
	O ₃ /H ₂ O ₂ /UV/TiO ₂)	114	
Fig. 4-20	Performance of photocatalytic process with regular sequence		
	regeneration by	115	
	aeration		
Fig. 4-21	(a) Actual vs. predicted values for COD removal, (b) response surface		
	plot for COD removal	122	
Fig. 4-22	(a) Actual vs. predicted values for U, (b) response surface plot for U 12		
Fig. 4-23	1/SRT versus specific substrate utilization rate (U) 12		
Fig. 4-24	Response surface plots for (a) effluent TSS, and (b) effluent turbidity 1		
Fig. 4-25	Response surface plot for SVI		
Fig. 4-26	Performance of BAS system treating Co-amoxiclav and ciprofloxacin 12		

List of Tables

Tables	
Table 1-1	Typical industrial wastewater contaminants
Table 1-2	Principal classes of antibiotics
Table 1-3	Timeline for wastewater treatment
Table 2-1	Summary of the removal/degradation processes applied in treatment of
	environmental matrices contaminated with antibiotics (β-Lactams)
Table 2-2	Different photocatalytic reactor
Table 2-3	Performance of different biological systems treating antibiotic
	wastewater
Table 3-1	List of chemicals and reagents
Table 3-2	Experimental range and levels of the independent variables
Table 3-3	Experimental conditions for UV/O ₃ /H ₂ O ₂ process
Table 3-4	Experimental conditions for photocatalytic process
Table 3-5	Physical dimensions of aeration tank in BAS set-up
Table 3-6	Physical dimensions of settling chamber in BAS set-up
Table 3-7	Wastewater characteristics in biological system
Table 3-8	Experimental range and levels of the independent parameters
Table 3-9	Order of experiments number according to operating conditions
Table 4-1	ANOVA for response surface model applied
Table. 4-2	An over view on the carried out studies (efficiency, biodegradability and
	effect of variables)
Table 4-3	Order of experiments number according to operating conditions
Table 4-4	ANOVA for response surface models applied
Table 4-5	An over view on the carried out studies (efficiency, biodegradability,
	effect of variables)
Table 4-6	Experimental conditions and results of central composite design
Table 4-7	ANOVA for response surface models applied
Table. 4-8	Comparison of kinetic constants based on mass balance equation for
	COD removal in the literature

Chapter 1

Introduction

1.1. Industrial wastewaters

Industrial wastewaters have very varied compositions depending on the type of industry and materials processed. Some of these wastewaters can be organically very strong, easily biodegradable, largely inorganic, or potentially inhibitory. This means TSS, BOD₅ and COD values may be in the tens of thousands mg/l. Such wastewaters may also be associated with high concentrations of dissolved metal salts. The flow pattern of industrial wastewater streams can be very different from that of domestic sewage since the former would be influenced by the nature of the operations within a factory rather than the usual activities encountered in the domestic setting. Factories may operate five to seven days per week. A consequence of this can be the possibility of zero flow on days when a factory is not operating. Industrial wastewater scan have very different characteristics even for wastewaters from a single type of industry but from different locations. Examples of industrial wastewaters include those arising from chemical, pharmaceutical, electrochemical, electronics, petrochemical, and food processing industries. Many industrial wastewaters do contain such potentially inhibitory or toxic substances. The presence of such substances in an ecosystem may bias a population towards members of the community which are more tolerant to the substances while eliminating those which are less tolerant and resulting in a loss of biodiversity. For similar reasons, an awareness of the impact such substances have on biological systems is not only relevant in terms of protection of the environment but is of no less importance in terms of their impact on the biological systems used to treat industrial wastewaters. Table 1-1 summarizes typical characteristics of various industrial wastewaters.

Industry	Characteristics of Wastewaters		
Food Processing (dairies)	High in dissolved organics—mainly protein, fat and lactose		
Meat and poultry processing	High in dissolved and suspended organics, including protein, blood,		
	greases, fats and manure		
Fruit and vegetable canneries	High in dissolved and suspended organics from natural products		
Breweries and distilleries	High in dissolved and suspended organics		
Pharmaceuticals	High in dissolved and suspended organics, including some surfactants and		
	biological agent, mainly originated from mycelium, filtrate and washing		
	processes		
Organic chemicals	Dissolved organics, including acids, aldehydes, phenolics, and free and		
	emulsified oils		
Petroleum refining	Phenolics, free and emulsified oils, and other dissolved organics		
Pulp and paper	Dissolved and suspended organics and inorganics		
Plastics and resins	Dissolved organics, including acids, aldehydes, phenolics, cellulose,		
	alcohols, surfactants and oils		
Explosives	Organic acids and alcohols, soaps and oils		
Rubber	Dissolved and suspended organics and oils		
Textiles	Dissolved and suspended organics, fats and oil		
Leather tanning and finishing	Dissolved and suspended organics, fats and oils, organic nitrogen, hair and		
	fleshings		
Coke and gas	High in phenolics, ammonia and dissolved organics		

 Table 1-1. Typical industrial wastewater contaminants[1]

1.2 Antibiotic industrial wastewater

Traditionally, antibiotics are defined as chemical compounds that eradicate or inhibit the growth of other microorganism. However, the term "antibiotic" has been expanded for antibacterial, antiviral, antifungal and antitumour compounds. Most of these substances have a microbial origin, but they may be also semi-synthetic or totally synthetic. Antibiotics can be divided into several classes, according to different criteria: spectrum, mechanism of action or chemical structure. Table 1-2 presents different classes and structures of antibiotics used.

The presence of pharmaceutical compounds, namely antibiotics, in the ecosystem has been known for almost 30 years. These wastewaters contain relatively high levels of suspended solids and soluble organics, many of which are recalcitrant. Furthermore, changes in production schedules lead to significant variability of the wastewater flow rate, its principal constituents and relative biodegradability.

Table 1-2. Principal classes of antibiotics [2]			
Class	Core structure	Class	Core structure
Aminoglycosides	HO +	Quinolones	
Anthracyclines β-Lactams	$ \begin{array}{c} $	Quinoxaline derivative	O^{-}
Carbapenems	COOR ₂ COOR ₂ CH ₃ CH ₃	Sulfonamidesz	H H R ₂ R ₂

These antibiotics are used as human medicine for the treatment of bacterial infections of skin, ear, respiratory tract, and urinary tract. These compounds have been widely used both for prevention and treatment of disease and as feed additives to promote growth in animal feeding operations. Amoxicillin (AMX), formerly amoxicillin in some markets, is a moderate-spectrum, bacteriolytic, β -lactam antibiotic used to treat bacterialinfections caused by susceptible microorganisms. It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other β -lactam antibiotics. Molecular structure of amoxicillin is as below:

1.3 Sources of antibiotics in the environment

The sources of antibiotics in natural water systems may be manufacturing operations in pharmaceutical industry and the rapeutical use of them for human and animals. The pharmaceutical manufacturing industry produces a wide range of products to be used as human and animal medications. In these last years, the use of antibiotics in veterinary and human medicine was widespread (annual consumption of 100,000-200,000 tons) and consequently, the possibility of water contamination with such compounds increased. As mentioned above, human and veterinary antibiotics have been detected in different matrices. These pollutants are continually discharged into the natural environment as parent compounds, metabolites/degradation products or both forms by a diversity of input sources as shown in Fig. 1-1.When dispersed in the fields as fertilizer, manure can contaminate soil and consequently surface and groundwater through runoff or leaching.