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Abstract 

In this study, two advanced oxidation processes including UV/O3/H2O2 and 

photocatalytic oxidation (TiO2) processes for the treatment of synthetic amoxicillin 

wastewater (SAW) were examined. In part one (UV/O3/H2O2 process), in order to 

investigate the effects of influential variables on the process performance, four independent 

factors involving two numerical factors, initial H2O2 concentration and initial pH, and two 

categorical factors, ozonation and UV irradiation, were selected. The process was modeled 

and analyzedusing response surface methodology (RSM). The region of exploration for the 

process was taken as the area enclosed by initial H2O2 concentration (0-20 mM) and initial 

pH (3-11) boundaries. For two categorical factors (ozonation and UV irradiation), the 

experiments were performed at two levels (with and without application of each factor). 

The response surface methodology (RSM) used in the present study was a general factorial 

design. In order to analyze the process, two dependent parameters (COD removal and 

BOD5/COD ratio) as the process responses were studied. The variables had a synergistic 

effect on the response. Maximum COD removal efficiency was obtained at H2O2 

concentration 20 mM at initial pH 11. As a result,O3/ H2O2 system at pH=5 showed better 

performance in terms of BOD5/COD ratio (0.40), although COD removal was 10% under 

this condition. From the HPLC chromatograms, complete degradation of amoxicillin was 

achieved. The photocatalytic (TiO2) oxidation process was also analyzed and modeled with 

three numerical independent factors i.e. initial CODconcentration, initial pH and reaction 

time using RSM. The region of exploration for the process was taken as the area enclosed 

by initial COD concentration(400-2000 mg/l), initial pH (3-11) and reaction time (20-240 

min) boundaries.The RSM used in this stage was a central composite face-centered design 

(CCFD). As a result, initial COD showed different impactat different pH on the COD 

removal efficiency. Maximum COD removal efficiency was 20% at CODin of 400 mg/l 

and reaction time 240 min while maximum specific COD removal rate (SRR) was found to 
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be 860 mg CODremoved/g cat.h at reaction time of 30 min and CODin 2000 mg/l. Maximum 

BOD5/COD ratio was modeled about 0.44 at the conditions with CODin 2000 mg/l and 

reaction time 30 min. The trend of changes in the ratio was match with the results obtained 

for COD removal efficiency. The photocatalytic process induced by O3 and O3/H2O2 

showed COD removal efficiencies of 53 and 58%, respectively after 240 min. BOD5/COD 

ratio was also determined to be 0.48 and 0.42, respectively for the conditions with O3 and 

O3/H2O2. Photocatalytic process with regularsequencesequence regeneration by aeration 

could achieve 38% COD removal efficiency. BOD5/COD ratio was also improved to 0.44. 

Baffled activated sludge (BAS) was also examined treating SAW. Two independent 

variables (CODin and MLVSS) were investigated and the process was modeled and 

analyzedusing response surface methodology (RSM). From the results, the ratio of food to 

microorganism (F/M) was found to be the most important factor for the process control. 

The F/M ratios less than 0.4 g CODin/g VSS.d, COD removal efficiency was decreased. 

Maximum removal efficiency (89 %) was determined at MLVSS and CODin of 4800 and 

2000 mg/l, respectively. Kinetic coefficients (Y and Kd) was determined 0.0815 g 

VSSproduced/g CODrem and 0.009 d
-1

, respectively. 
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1.1 . Industrial wastewaters 

Industrial wastewaters have very varied compositions depending on the type of industry 

and materials processed. Some of these wastewaters can be organically very strong, easily 

biodegradable, largely inorganic, or potentially inhibitory. This means TSS, BOD5 and 

COD values may be in the tens of thousands mg/l. Such wastewaters may also be 

associated with high concentrations of dissolved metal salts. The flow pattern of industrial 

wastewater streams can be very different from that of domestic sewage since the former 

would be influenced by the nature of the operations within a factory rather than the usual 

activities encountered in the domestic setting. Factories may operate five to seven days per 

week. A consequence of this can be the possibility of zero flow on days when a factory is 

not operating. Industrial wastewater scan have very different characteristics even for 

wastewaters from a single type of industry but from different locations. Examples of 

industrial wastewaters include those arising from chemical, pharmaceutical, 

electrochemical, electronics, petrochemical, and food processing industries. Many 

industrial wastewaters do contain such potentially inhibitory or toxic substances. The 

presence of such substances in an ecosystem may bias a population towards members of 

the community which are more tolerant to the substances while eliminating those which 

are less tolerant and resulting in a loss of biodiversity. For similar reasons, an awareness of 

the impact such substances have on biological systems is not only relevant in terms of 

protection of the environment but is of no less importance in terms of their impact on the 

biological systems used to treat industrial wastewaters. Table 1-1 summarizes typical 

characteristics of various industrial wastewaters. 
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Table 1-1. Typical industrial wastewater contaminants[1] 

Industry Characteristics of Wastewaters 

Food Processing (dairies) High in dissolved organics—mainly protein, fat and lactose 

Meat and poultry processing High in dissolved and suspended organics, including protein, blood, 

greases, fats and manure 

Fruit and vegetable canneries High in dissolved and suspended organics from natural products 

Breweries and distilleries High in dissolved and suspended organics 

Pharmaceuticals High in dissolved and suspended organics, including some surfactants and 

biological agent, mainly originated from mycelium, filtrate and washing 

processes  

Organic chemicals Dissolved organics, including acids, aldehydes, phenolics, and free and 

emulsified oils 

Petroleum refining Phenolics, free and emulsified oils, and other dissolved organics 

Pulp and paper Dissolved and suspended organics and inorganics 

Plastics and resins Dissolved organics, including acids, aldehydes, phenolics, cellulose, 

alcohols, surfactants and oils  

Explosives Organic acids and alcohols, soaps and oils 

Rubber Dissolved and suspended organics and oils 

Textiles Dissolved and suspended organics, fats and oil 

Leather tanning and finishing Dissolved and suspended organics, fats and oils, organic nitrogen, hair and 

fleshings 

Coke and gas High in phenolics, ammonia and dissolved organics 

 

1.2 Antibiotic industrial wastewater 

Traditionally, antibiotics are defined as chemical compounds that eradicate or inhibit the 

growth of other microorganism. However, the term ―antibiotic‖ has been expanded for 

antibacterial, antiviral, antifungal and antitumour compounds. Most of these substances 

have a microbial origin, but they may be also semi-synthetic or totally synthetic. 

Antibiotics can be divided into several classes, according to different criteria: spectrum, 

mechanism of action or chemical structure. Table 1-2 presents different classes and 

structures of antibiotics used. 

The presence of pharmaceutical compounds, namely antibiotics, in the ecosystem has been 

known for almost 30 years. These wastewaters contain relatively high levels of suspended 

solids and soluble organics, many of which are recalcitrant. Furthermore, changes in 
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production schedules lead to significant variability of the wastewater flow rate, its 

principal constituents and relative biodegradability. 
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Table 1-2. Principal classes of antibiotics [2] 

Class Core structure Class Core structure 

Aminoglycosides 

O

HO

O

O

HO

O

HO

H2N

NH

OH

NH

HN

OH

HO NHCH3

H2C

HO

R

H3C

NH2

NH

OH

OH

HO

H2N

R

NH2

 

Quinolones 

N

OH

R4

R3

OOR5

R2 R1  

Anthracyclines 

 β-Lactams 

R2 O R3 R4

R5

R6

R7OHOR1  

Quinoxaline 

derivative 

N+

N+

O-

R

O-
 

Carbapenems 

N

O

CH3

CH3

COOR2

N
H

R1

O

 

Sulfonamidesz 
S

N
H

R1

N

H

R2

OO
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Cephalosporins 

N

S

R3

COOR2

O

N
H

R1

O

 

Tetracyclines  

OH

CONHR5

OH

OHOH

R1
R2

R4 N

CH3H3C

O O

 

Monobactams 

NR5

R3R2

N
H

R4

O

R1

 

Chloramphenicol 

HO

O

H
N

ClO2N

ClOH

 

Penicillins 

N

S

O

CH3

CH3

COOR2

N
H

R1

O

 

Mitomycins 

O

NH2

R1

H3C

R2

N

O

O

O

R3

 

Glycopeptides 

O

O O

N
H

H
N

N
H

H
N

N
H

O

R5

O

R2OR1

OR3

N

OR4
R6

R7O

O

O

OR15

R13O

R12

OR9

R10

OR8

O

HO

R11
R16

NH

 

Trimethoprim 

N

N

OCH3

OCH3

OCH3

H2N

NH2

 



7 
 

Imidazoles 

N

N

R2

R1

H3C

 

Polyethers 

OH

CH3

O

H3C

O

H3C

O

O

O

HOOC

H3C

O
CH3

CH3

OH

H3CH2C

CH3

CH3HO  
Lincosamides 

O

N
H

SR4

OH

OH

HO

CH3

R4

R3

N

H3C

R1

O

 

  

Macrolides 

O

O

HO
O

H3C

O

O

OH

H3C

H3C
CH3

N(CH3)2

CH2R4

R5O

H3C

CH3

CH3

O

H3CH2C
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CH3

R3

CH3

R2

 

O

O

CH3

OCHR2

CH3

R1

H3C

CH3

CH3

CH3

N(CH3)2HO

O

O
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These antibiotics are used as human medicine for the treatment of bacterial infections of 

skin, ear, respiratory tract, and urinary tract. These compounds have been widely used both 

for prevention and treatment of disease and as feed additives to promote growth in animal 

feeding operations. Amoxicillin (AMX), formerly amoxicillin in some markets, is a 

moderate-spectrum, bacteriolytic, β-lactam antibiotic used to treat bacterialinfections 

caused by susceptible microorganisms. It is usually the drug of choice within the class 

because it is better absorbed, following oral administration, than other β-lactam antibiotics. 

Molecular structure of amoxicillin is as below: 

S

H
N

O

HO

H

O

OH

O

NH2

 

 

1.3 Sources of antibiotics in the environment 

The sources of antibiotics in natural water systems may be manufacturing operations in 

pharmaceutical industry and the rapeutical use of them for human and animals. The 

pharmaceutical manufacturing industry produces a wide range of products to be used as 

human and animal medications. In these last years, the use of antibiotics in veterinary and 

human medicine was widespread (annual consumption of 100,000-200,000 tons) and 

consequently, the possibility of water contamination with such compounds increased. As 

mentioned above, human and veterinary antibiotics have been detected in different 

matrices. These pollutants are continually discharged into the natural environment as 

parent compounds, metabolites/degradation products or both forms by a diversity of input 

sources as shown in Fig. 1-1.When dispersed in the fields as fertilizer, manure can 

contaminate soil and consequently surface and groundwater through runoff or leaching. 

http://en.wikipedia.org/wiki/Beta-lactam_antibiotic
http://en.wikipedia.org/wiki/Antibiotic
http://en.wikipedia.org/wiki/Bacterial
http://en.wikipedia.org/wiki/Bacterial
http://en.wikipedia.org/wiki/Microorganism

