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Preface

" People do acquire a little brief authority by equipping themselves with jargon
: they can pontificate and air a superfical expertise. But what we should ask of
educated mathematicians is not what they can speechify about, nor even what
they know about the existing corpus of mathematical knowledge, but rather what
can they now do with their learning and whether they can actually solve math-
ematical problems arising in practice. In short, we look for deeds not words.”
J.Hammersley [29].

”Mathematics is a tool for tought. A highly necessary tool in a word where
both feedback and nonlinearities abound. Similary, all kinds of parts of mathe-
matics serve as tools for other parts and for other sciences.” A. Helemskii [31].

The subject of amenability essentially begins with Lebesgue (1904). One of
the properties of his integral is a version of monotone convergence theorem, and
Lebegue asked if this property was really fundamental, that is, if the property
follows from the more familar integral axioms. Now the monotone convergence

theorem is equivalent to countable additivity, and so the question is concerned




with the existence of a positive, finitely (but not countably) additive, translation
invariant measure y on R with x([0, 1]) = 1.

The classical period (1904-1938) is therefore concerned with the study of
finitely additive, invariant measure theory.

The modern period begins in the 1940 and continues with increasing energy
to the present. The main shift is from finitely additive measures to means: in-
tegrating a positive, finitely additive measure x on a set X with w(X) =1 gives
rise to mean m on X, that is a connection linear functional on £°(X) such that
m(1) =1 =|/m||. The connection between x and m is given by k(E) = m(xg),
and the correspondence y — m is bijective. Hence a group G is called amenable
if and only if there exists a left invariant means on G.

In the 1940 and 1950, the subject of amenable groups and amenable semi-
groups was studied by M. M. Day, and his 1957 paper on amenable semigroups
1s a major landmark.

The ubiquity of amenability ideas and the depth of the mathematics with
which the subject is involved seems evidence to the author that here we have a
topic of fundamental importance in modern mathematics, one that deserves to be
more widely known that it is at present. A good example of how amenability ideas
can cross mathematical categories is affored by the theory of amenable Banach
algebras. This theory, which is largely the creation of B. E. Johnson, is discussed
in chapter 2. A Banach algebra A is called amenable if the first cohomology

group, H(A,X*) = 0 for every dual Banach A-module X*. This means that




every continuous derivation D : A — X* is inner. At first sight, there does not
seem to be any connection between invariant means and derivations. However,
Johnson proved the remarkable result that if G is a locally compact group, then
G is amenable if and only if the Banach algebra L'(G) is amenable. This Jjustifies
the terminology amenable Banach algebra.

The other works that has recently appeared (1991), relevant to the relationship
between alﬁenability of Banach algébras and amenability of groups (semigroups)
are the papers [45], [46], [47], by A. L. Paterson. He proved that a C *-algebra A
is amenable if and only if U(A), the unitary group of A, is amenable. We have
attempted to describe the main lines and developed this sub ject.

: ( Chapters 1 and 2 establish the basic theory of amenability of topological
groups and amenability of Banach algebras. Also we prove that

If G is a topological group, then R(WLUC(G)) # @ [ resp. R(LUC(G)) # 0]
if and only if there exists a mean m on WLUC(G) | resp. LUC(G) | such that
for every f € WLUC(G) [resp. every f € LUC(G)] and every element d of a
dense subset D of G, m(Rqf) = m(f) holds.

Chapter 3 investigates relations between amenability of Banach algebras and
groups (semigroups). We show that a A*-algebra A is amenable if [/ (A), the
vunitary group of A, is amenable. Furthermore, give an e).(ample that the converse
is not true in general. Als_o we prove that

If G is a bounded subset of a unital Banach algebra A such that G is a group

w.r.t. multiplication operation of A, and spdn(G) = A. If G is a topological




group w.r.t. o(A, A*)-topology and G is amenable, then A is an amenable
Banach algebra. Thus, we show that:
The following statements are equivalent for a von Neumann algebra M, with
unitary group H and isometry semigroup /.

(1) M is injective.

(2) there exists a right invariant mean on WLUC (H).

(3) there exists a right invariant mean on W LI/C (1).
Also, the following statements are equivalent for a C*-algebra A, with unitary
group G and isometry semigroup S.

(1) A is nuclear.

(2) there exists a right invariant mean on LUC (G).

(3) there exists a right invariant mean on LUC (S). )
Throughout the thesis we use results from certain standard textbooks. These
textbooks are listed, together with other references, at the Bibliography. I am
very grateful to my supervisor professor A. Niknam for mathematical discussions

and advice.
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Chapter 1

Amenable topological groups

This chapter establish the basic theory of means on various functions spaces
and amenability of topological groups. Also we prove that

If G is a topological group, then R(WLUC(G)) # @ [resp. R(LUC(G)) # 0 ]
if and only if there exists a mean m on WLUC(G) [ resp. LUC(G) ] such that
for every f € WLUC(G) [resp. every f € LUC(G)] and every element d of a
dense subset D of G, m(Raf) = m(f) holds.

This result are used in chapter 3, when we investigate relationship between
amenability of a Banach algebra A, and existence invariant means on WLUC(G),

where G is the unitary group of A.

1 Means on various functions spaces

Throughout this section S denotes an arbitrary nonempty set. Recall that £°(S)

is the C'*-algebra of all bounded complex-valued functions on S.
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1.1 Definition

Let F be a linear subspace of £*°(S) and let F, denote the set of all real-valued

members of . A mean on F is a linear function p on F with the property that

inf f(s) <p(f)<supf(s) (FeFR) (1)

seS 3€S

The set of all means on F is denoted by M(F). If F is also an algebra and

if p € M(F) satisfies

1(fg) = u(f)ulg) (f,9€F)

then u is said to be multiplicative. The set of all multiplication means on F is

called the spectrum of F and will be denoted by MM(F).

1.2 Proposition

Let F be a conjugate closed linear subspace of {*°(S) containing the constant
functions. A mean px on F has the following properties.

(i) u is positive, that is, if f € F, and [ 20, then u(f) > 0.

(ii) p(1) = L.

(iii) p is a bounded linear functional on F with llell = 1.

(iv)For all /€ F.p(Re f) = Re(u(f)), (Tm f) = Im(u(f)) and u(F) =
w(f).
(v) u(f) is in the closed convex hull of f(S) forall f € F.

Conversely, a linear functional i on F that satisfies any two of properties (i),

(i1). (iii) is a mean. ([4], Chapter 2, Proposition 1.2 )
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1.3 Definition

Let F be a conjugate closed linear subspace of £*°(S) containing the constant

functions. For each s € S define ¢(s) € M(F) by

e(s)(f) = £(s) (feF)

The mapping € : S — M(F) is called the evaluation mapping, and ¢(s) is
called evaluation at s. If F is also an algebra, then €(S) € MM(F), hence we
may write € : § — MM(F). In the setting being developed here, the natural

topology of X = M(F) or X = MM(F) is the relative weak*-topology o (X, F).

1.4 Definition

Let F be a conjugate closed linear subspace (respectively, subalgebra) of £(S)
containing the constant functions, and let X = M (F ) (respectively, X = MM (F))

be furnished with the relative Wea,k*-topﬁt_)ﬁlrogy.r For each f € F the function

f € C(X) is defined by

further, we define

1.5 Remark

The mapping f — f : F — C(X) is clearly linear ( and multiplicative if Fis an

algebra and X = MM(F) ), preserves complex conjugation, and is an 1sometry
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since for anyv [ € F
U1 = sup{lu(F)] : p € X} < sup{lu(f)]: u € COX)*, Il < 1} = i1

= sup{|f(s)| : s € S} = sup{|f(e(s))] : s € S} < |If|

where € : S — X denotes the evaluation mapping, so that
fle(s)) = f(s) (f € Fses).

This last identity may be written in terms of the dual map €* : C(X) — £°(3)
as €' (f ) = f (f € F). The topological and geometric structure of M (F) is

described in the following theorem.

1.6 Theorem

Let F be a conjugate closed linear subspace of ¢*(S) containing the constant
functions. Then the following assertions hold.

(i) M(F) is convex and weak* compact,.

(ii) co(e(S)) is weak* dense in M (F).

(iii) F* is the weak* closed linear span of e(S).

(iv) If F is also an algebra, then MM (F) is weak* compact and ¢(S) is weak*
dense in MM (F).

(v) If S is a topological space and F C C(S), then € : S — M(F) is weak*

countinuous. ([4], Chapter 2. Theorem 1.8)
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2 Invariant means

Throughout this section S denotes an arbitrary semigroup. A central problem
in the theory of means is to determine whether or not a given space of bounded
functions on semigroups possesses a mean that is left (or right) translation in-

variant.

2.1 Definition

Let f € ¢>(S) and let s € S. The right (respectively, left) translate of f by s
is the function R,f (respectively, L,f) where R,f(t) = f(ts), L,f(t) = f(st). A
subset F of £°(S) is said to be right (respectively, left) translation invariant if for
every f € F and every s € S, R,f € F (respectively, L,f € F). F is translation
invariant if it is both right and left translation invariant.

Let F be a left (respectively, right) translation invariant, conjugate closed,
linear subspace of £>(S) containing the constant functions. A member p of F*
is said to be left ( respectively, right ) invariant if , for all f € Fand s €

p(Lsf) = p(f) (respectively, p(Rsf) = u(f)). The set of all left ( respectively,
right ) invariant means on F is denoted by L£(F) (respectively, R(F)). F is said
to be left ( respectively, right ) amenable if £(F) # @ ( respectively, R(F) #0).

If F is translation invariant we set
I(F) := L(F) NR(F)

and call members of Z(F) invariant means. F is said to be amenable if Z(F) # 0.
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S is said to be left amenable, right amenable, or amenable if the appropriate

property holds for ¢>(S).

2.2 Remark

It is easy to check that L(F), when nonempty, is a weak* closed convex subset
of 7*. The same holds for R(F). It follows that if F has two distinct left (or
right) invariant means, then it has infinitely many.

Let S be a group and let F be a linear subspace of ¢°°(S). For each f € F
define f : § — C by f(s) = f(s™h (s€8),

andset]}::{f:fef}ifuef*,deﬁnejle.?:"by

ir)=ulf)  (ferF)

If F = F and A = p then pu is said to be inversion invariant.

2.3 Example

(i) Let S = {s), 59, 5n} be a finite left cancellative semigroup.

Then n™! 37 | ¢(s;) is a left invariant mean on ¢{*(S), where ¢ is the evaluation
mapping,

(ii) If S is a compact, Hausdorff, topological group, then C(S) has a unique
invariant mean that is also inversion invariant, ([4), Chapter 2, Corollary 3.12 )

(iii) Every abelian semigroup S is amenable. (4], Chapter 2, Corollary 3.8 )




