

بسمه تعالى

مديريت تحصيلات تكميلي

تعهد نامه اصالت اثر

اینجانب سجاد رشنو متعهد می شوم که مطالب مندرج در این پایان نامه حاصل کار پژوهشی اینجانب است و دستاوردهای پژوهشی دیگران که در این پژوهش از آنها استفاده شده است ، مطابق مقررات ارجاع و در فهرست منابع و ماخذ ذکر گردیده است . این پایان نامه قبلا برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نشده است . در صورت اثبات تخلف (در هر زمان) مدرک تحصیلی صادر شده توسط دانشگاه از اعتبار ساقط خواهد شد.

کلیه حقوق مادی و معنوی این اثر متعلق به دانشگاه تربیت دبیر شهید رجایی می باشد .

نام و نام خانوادگی دانشجو

امضاء

دانشکده مهندسی مکانیک

بررسی اثر قلع بر ریزساختار و رفتار خزش فروروندگی آلیاژ MRI153 منیزیم

نگارش

سجاد رشنو

استاد راهنما: دکتر سید مهدی میراسماعیلی

استاد مشاور: دکتر بهرام نامی

پایاننامه برای دریافت درجه کارشناسی ارشد

در رشته مهندسی مواد

مهرماه ۱۳۹۰

تائيديه هيات داوران جلسه دفاع پايان نامه

تقدیم به مهربان فرشتگانی که؛ لحظات ناب باور بودن، لذت و غرور دانستن، جسارت خواستن، شکوه توانستن، عظمت رسیدن و تمام تجربههای یکتا و زیبای زندگیم مدیون حضور سبز آنهاست.

تشکر و قدردانی

سپاس خدای را که حق ستایش او بالاتر از حد ستایشگران است و نعمتهایش فوق اندیشه شمارشگران. بر خود لازم می دانم که صمیمانه ترین تشکر وقدردانی خود را نسبت به آقای دکتر سید مهدی میراسماعیلی که با نور علم شان مسیر تحقیق را برایم روشن نمودند، داشته باشم. از آقای دکتر بهرام نامی، استاد مشاور ارجمندم، به خاطر راهنماییهای بی شائبهشان در طول پژوهش خصوصا راهنماییهای ایشان در کار ساخت دستگاه خزش تشکر وقدردانی می نمایم. همچنین از کمکهای برادرانه و بزرگوارانه جناب آقای مهندس محمدی و سایر عزیزانی که در مراحل مختلف انجام این تحقیق از کمکها و نظرات ارزنده خود دریغ نکردند، نیز سپاسگذارم. آلیاژ 1MRI153 منیزیم توسعه یافته آلیاژ AZ91 بوده که در سالهای اخیر توسط شرکت فولکس واگن۲ معرفی گردیده است.

در تحقیق حاضر تاثیر قلع بر ریزساختار و رفتار خزشی آلیاژ MRI153 در حالت ریختگی مورد بررسی قرار گرفته است. رفتار خزشی آلیاژها با استفاده از خزش فروروندگی با فرورونده استوانهای در محدوده تنش 0.025 < s/G < 0.04 در دمای⁰ ۱۵۲ تا⁰ ۲۱۷ بررسی شده است.

نتایج نشان میدهد که افزودن قلع به آلیاژ MRI153 از پیوستگی فاز Mg₁₇Al₁₂ کاسته و با حذف فاز Al₂Ca باعث تشکیل فاز CaMgSn در ریزساختار میشود.

همچنین نشان داده شده که مقاومت خزشی آلیاژ MRI153 با حذف فاز Al₂Ca و بدلیل استحکام پایین فاز CaMgSn و نوع مورفولوژی آن کاهش یافته و این فاز نمی تواند به عنوان مانعی در برابر لغزش مرزدانه ها عمل نماید.

بامحاسبه انرژی اکتیواسیون خزش و توان تنش براساس خزش توانی معلوم شد که خزش نابجایی کنترل شونده بوسیله صعود، مکانیزم غالب در تغییر فرم خزشی آلیاژ MRI153 در حالت ریختگی در شرایط تحقیق بوده و قلع تاثیری بر روی مکانیزم خزشی ندارد.

كلمات كليدى:

آلياژ منيزيم MRI153، ريزساختار، خزش فروروندگی، قلع

۱ - Magnesium Research Institute

۲ - Volks wagen

فهرست مطالب

فصل اول: مقدمه

۲	۱–۱– فصل اول: مقدمه
۶	فصل دوم: مروری بر منابع
۶	۲-۱- مقدمهای بر پدیده خزش
٨	۲-۲- مکانیزم های خزش
١٢	۲-۳- خزش فروروندگی
۱۵	۲-۴- تحلیل خزش فروروندگی
18	۲–۵– ویژگیهای عمومی منیزیم و آلیاژهای آن
١٧	۲–۶– کاربرد منیزیم در صنعت خودرو سازی
۱۹	۲–۷– مروری بر رفتار خزشی منیزیم و آلیاژهای آن
22	۲–۸– مشخصات و ویژگیهای آلیاژ MRI153 منیزیم
74	۲–۹– ریزساختار آلیاژ MRI153
۲۸	۲–۱۰ توسعه آلیاژهای منیزیم با مقاومت خزشی بالا
۲۹	۲-۱۱- آلیاژهای ریختگی منیزیم با مقاومت خزشی بالا
۲۹	Mg-Al-Si - آلیاژ – ۱–۱۱–۲
٣٢	۲–۱۱–۲ آلیاژهای Mg-Al-RE
٣٣	mg-Al-Sr آلیاز –۳–۱۱–۲
34	۲–۱۱–۲– آلیاژهای حاوی Zr ,Th ,Y
۳٩	۲–۱۲– تأثیر قلع بر ریزساختار و خواص مکانیکی منیزیم و آلیاژهای آن
۴۸	۲-۱۳- جمع بندی

49	فصل سوم : روش تحقيق
٥٠	۳–۱–مقارمه
۵۳	٣-٢-آلياژسازى
٥٣	۳–۲–۲ آلیاژسازی MRI153
۵۵	۳-۲-۲-آلیاژهای حاوی قلع
۵۵	۳-۳- تعیین ترکیب شیمیایی آلیاژها
۵۵	۳-۴- آماده سازی نمونه های خزش
۵۶	٣-٥- آزمايش خزش
۵۶	۳-۵-۱- دستگاه خزش فروروندگی
۵۷	۳–۵–۲ روش آزمایش
۵۸	۳-۶-متالو گرافی کیفی
۵۹	۳–۷– آنالیز پراش اشعه XX
۵۹	۳-۸- میکروسختی سنجی
۶.	فصل چهارم: نتایج و تحلیل آنها
61	۴-۱- ترکیب شیمیایی آلیاژهای تولید شده۴
61	۴-۲- ریزساختار آلیاژهای تولید شده
61	−۱−۲−۴ آلیاژ MRI153
۶۳	۲−۲−۴ آلیاژ MRI153+0.85Sn و MRI153+1.8Sn
9V	۴–۳– رفتار خزشی آلیاژهای MRI153 ، MRI153 و MRI153+1.8Sn
9V	۴-۳-۲ بررسی منحنی های خزش
۷١	۴-۳-۲ تعیین مکانیزم خزش
۷۴	۴-۴- تعیین معادله تغییر فرم خزشی

٧٧	۴-۵- ریزساختار نمونه ها پس از خزش	
٧٧	۴–۵–۱– الگوی تغیر فرم مواد در زیر فرورونده	
٧٨	۲–۵–۴ آلیاژ MRI153	
۸١	۳−۵−۴ آلیاژ MRI153+0.85Sn و MRI153+1.8Sn	
۸۵	۴-۶- دلایل کاهش مقاومت خزشی با افزودن قلع۴	
٨٩	فصل پنجم: نتیجه گیری و ارائه پیشنهادات	
٩٠	۵-۱- نتیجه گیری	
٩٢	۵–۲– پیشنهادات جهت تحقیقات آینده	
٩٣	فهرست منابع	

فهرست جداول

٩	جدول (۲–۱) مکانیزمهای خزش در سطح میکرونی
	جدول (۲–۲) مقادیر مختلف Q، n و p برای مکانیزمهای کنترل کننده سرعت خزش در آلیاژهای پایه
۱۱	منيزيم
۲.	جدول (۲–۳) نرخ خزش و انرژی اکتیواسیون برای مکانیزمهای خزشی فعال شونده بوسیله حرارت
۲۳	جدول(۲-۴) مقایسه خواص مکانیکی آلیاژ MRI153 با دیگر آلیاژهای منیزیم
37	جدول(۲–۵) مقایسه خزش کششی آلیاژهای تحت فشار منیزیم
61	جدول (۴–۱) ترکیب شیمیایی آلیاژهای تولید شده و محدوده ترکیب آلیاژ استانداردMRI153
۶۳	جدول (۴–۲) ترکیب شیمیایی نقاط مشخص شده بر روی شکل (۴–۲) برحسب درصد اتمی

60	بر روی شکل (۴–۵–ج)	عنصری فاز B نشان داده شده	جدول (۴–۳) جدول (۴–۳) آنالیز .
----	--------------------	---------------------------	--------------------------------

- جدول(۴–۴) مقادیر n و A در معادله (۴–۵) برای آلیاژها در حالت ریختگی...... ۷۷
- جدول (۴–۵) ترکیب شیمیایی نقاط مشخص شده بر روی شکل (۴–۱۸) الف بر حسب درصد اتمی..... ۸۱
- جدول (۴–۶) ترکیب شیمیایی نقاط مشخص شده بر روی شکل (۴–۲۱)-الف برحسب درصد اتمی...... ۸۴
- جدول(۴–۷) میکروسختی مخلوط یو تکتیک در ریزساختار آلیاژ MRI153+0.85Sn ،MRI153

فهرست تصاوير

9	شكل(۲-۱) شماتيك دستگاه آزمايش خزش
٧	شکل(۲-۲) نمودار ایده ال خزش مواد تحت تأثیر دما و تنش
	شکل(۲–۳) نمودار سرعت کرنش خزشی نسبت به دما(نمودار خزش به سه ناحیه اولیه،ثانویه و ثالثیه
۷	تقسيم مىشود
۱۱	شكل(۲-۴) نمودار شماتيك نقشه مكانيزم تغيير شكل
۱۳	شکل (۲–۵) تصویر شماتیک خزش فروروندگی با استفاده از فرورونده استوانه ای
14	شکل (۲–۶) تصویر شماتیک دستگاه خزش فروروندگی
	شکل(۲–۷) برخی از قطعات اتومبیل تولید شده از منیزیم به همراه درصد کاهش وزن در جایگزینی
۱۸	به جای آلیاژهای دیگر
۱۹	شکل(۲–۸) برخی از قطعات تولید شده خودرو از آلیاژهای منیزیم
74	شکل(۲-۹) مقایسه نرخ کرنش خزشی آلیاژهایMRI155-625 با آلیاژ AZ91 و AE42
۲۵	شکل(۲-۱۰) نمودار (الف) دو تایی Mg-Al، (ب) بخش غنی از منیزیم دیاگرام فاز سه تایی
	شکل(۲–۱۱) تأثیر افزودن کلسیم بر مورفولوژی یوتکتیک آلیاژ AZ91 الف)Ca ۰٪ ، ب)۲ Ca ٪، ٪،
28	ج/۱Ca (۱۲، ۱۵، ۲۰/۴ Ca).
	شکل(2-12) بخش غنی از منیزیم دیاگرام فاز سه تایی Mg-Al-Ca به همراه ترکیبات بین فلزی
۲۷	تشکیل شده در حین انجماد آلیاژهای مختلف
۲۷	شكل(۲–۱۳) تأثير افزودن كلسيم بر اندازه دانه آلياژ AZ91
	شکل(۲–۱۴) تأثیر الف) آلومینیوم و ب) عناصر آلیاژی RE ،Ca ،Sr برخواص و قیمت آلیاژهای
29	تحت فشار منيزيم
۳۱	شکل (۲–۱۵) ریزساختار آلیاژ AS21 تولید شده به روش ریخته گری تحت فشار
	شکل (۲–۱۶) تنش لازم برای ایجاد ۰/۱ درصد خزش در مدت ۱۰۰ ساعت در دماهای مختلف برای
۳۱	آلیاژهای سیستم Mg-Al و همچنین آلیاژ ریختگی A380 آلومینیم
34	شكل (۲–۱۷) ريزساختار آلياژ (الف)AJ51، (ب)AJ62L، (ج)AJ52، (د)AJ62

شکل(۲–۱۸) نمودار خزشی آلیاژهای AJ,AJC, AE42 در دمای °C ۱۷۵ و تنش ۷۰Mpa در مدت
زمان ۱۰۰ ساعت
شکل (۲–۱۹) (الف) اثر دما بر استحکام کششی نهایی آلیاژهای سری WE در مقایسه با دیگر
آلیاژهای منیزیم (ب) مقایسه استحکام خزشی ۰/۰۲٪ آلیاژهای سری WE در ۱۰۰ ساعت در دمای
۲۰۰ [°] C در مقایسه با دیگر آلیاژهای منیزیم
شکل (۲-۲۰) تصویر میکروسکوپ از آلیاژMg-Sn. (الف)Mg-1Sn، (ب)Mg-3Sn، (ج) 5Sn-
Mg–10Sn (۵)،Mg–7Sn (۵)،Mg
شکل (۲–۲۱) مقایسه نرخ خزش فروروندگی آلیاژ Mg-Sn با آلیاژ AE42 در دمای C°۱۵۰
شکل (۲–۲۲) تصویر میکروسکوپ الکترونی و مورفولوژی فازهای مختلف در آلیاژهای (الف)
Mg-5Sn-0.7Ca (ب) Mg-5Sn-0.7Ca (ج) Mg-5Sn-0.7Ca (د) Mg-5Sn-2Ca.
شکل (۲–۲۳) تصاویر میکروسکوپ الکترونی شبکه ذرات فاز ثانویه در زمینه(α(Mg) (الف) -Mg
Ssn، (ب) Mg-5Sn-0.15Sb، (ج) Mg-5Sn-0.4Sb، (د) Mg-5Sn-0.7Sb و در بزرگنمایی بالاتر
(ه) Mg-5Sn متشكل از يوتكتيك Mg-α+ Mg ₂ Sn، (و) Mg-5Sn-0.15Sb متشكل از Mg ₃ Sb ₂
همراه با ذرات لایهای و کروی Mg ₂ Sn، (ز) Mg-5Sn-0.4Sb متشکل از Mg ₃ Sb ₂ و ذرات کروی
Mg ₂ Sn، (ح) Mg ₂ Sn-0.7Sb متشکل از Mg ₃ Sb ₂ ، SnSb، Mg ₃ Sb و ذرات کروی Mg ₂ Sn
شکل(۲–۲۴) نمودار خزش فشاری آلیاژ Mg-5Sn در حالت ریختگی و پیرسازی شده
شكل(۲–۲۵) تصویر میكروسكوپ الكترونی آلیاژ ریختگی (الف) Mg-5Sn، (ب) Mg-5Sn، (Mg-5Sn، (ب
(ج) Mg-6.5Sn-2La (د) Mg-8.5Sn-2La (ج)
شکل (۲–۲۶) رفتار خزش فشاری آلیاژ Mg-5Sn-1La ، Mg-5Sn-2La ، Mg-6.5Sn-2La ، Mg-6.5Sn
2La در دمای ۴۷۳K و تنش ۳۵Mpa
شکل(۲–۲۷) مقایسه نرخ خزش فروروندگی برای آلیاژ Mg-5Sn-2Di ، Mg-5Sn (الف)
در دمایC° ۱۵۰ ، (ب) در دمایC° ۱۷۵
شکل (۳–۱) طرح نموداری مراحل ساخت و ریخته گری آلیاژهای مورد استفاده دراین پروژه
شکل (۳–۲) طرح نموداری مراحل آماده سازی نمونه ها و آزمایش خزش
شکل(۳–۳) تصویر شماتیک محفظه ایجاد گاز So _۲
شکل(۳–۴) تصویر شماتیک سیستم مورد استفاده برای تولید شمش های اولیه

م کل (۳-۹) تصویر شماتیک نمونههای خزش (الف)نمونه پولکی، (ب) نمونههای نهایی	۵۷	شکل (۳–۵) تصویر دستگاه خزش فروروندگی ساخته شده
۶۲ ۹۲ (۱-۴) تصویر میکروسکوپ نوری آلیاز MRI153 ۶۷ (۲-۴) تایج SEM آلیاز SEM به همراه طیف EDX فازهای نشان داده شده ۶۷ (۲-۴) تایج SEM آلیاز SEM به همراه طیف EDX ۶۷ (۲-۴) الگوی پراش اشعه X آلیاز MRI153+0.85Sn ۶۹ (۲-۵) تایج MSE Tیاز MRI153+0.85Sn به همراه طیف MRI153+0.85Sn ۶۹ (۲-۵) تایج MSE Tیاز NESSn MRI153+0.85Sn ۶۹ (۲-۵) تایج MSE Tیاز NASSn NRI153+0.85Sn	۵۸	شکل (۳–۶) تصویر شماتیک نمونههای خزش (الف)نمونه پولکی، (ب) نمونههای نهایی
۶۲ ۲۹ ۶۷ (۳-۴) نایچ MSI آلباژ SEM به همراه طیف EDX فازهای نشان داده شده	62	شکل(۴–۱) تصویر میکروسکوپ نوری آلیاژ MRI153
۶۳	97	شکل (۴–۲) نتایج SEM آلیاژ MRI153 به همراه طیف EDX فازهای نشان داده شده
94سویر میکروسکوپ نوری آلیاژ MRI153+0.85Sn MRI153+0.85Sn الحمال95سرام الحمال94(۹-۵) نایج MST آلیاژ MRI153+0.85Sn MRI153+0.85Sn الحمال95(۹-۹) الحمال96(۹-۹) الحمال97سالم الحمال98(۹-۹) الحمال99(۹-۹) الحمال90(۹-۹) الحمال91(۹-۹) نایج MRI153+1.85N MRI153+0.855 MRI153+1.85N MRI153+0.855	۶۳	شکل (۴–۳) الگوی پراش اشعه X آلیاژ MRI153
9494(۹-۹) نتایج SEM آلیاژ NRI153+0.85Sn به همراه طیف EDX فازهای نشان داده شده9595(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+0.85Sn9595(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N9595(۹-۹) نتایج MRI153+1.85n آلیاژ NRI153+1.85n9695(۹-۹) نتایج SEM آلیاژ SEM به همراه طیف EDX فازهای نشان داده شده9795(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N98(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N99(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N90(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N91(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N92(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N93(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+1.85N94(۹-۹) الگوی پراش اشعه X آلیاژ NRI153+0.85N95(۹-۹) الی آلیاژ NRI153+0.85N96(۹-۹) منحنان (الف) آلیاژ NRI15397(۱۹-۹) منحنی خزش آلیاژ NRI153+0.85N98(۹-۹) منحنان (الف) آلیاژ NRI15399(الاح) ۲۹90(الاح) ۲۹90(الاح) ۲۹91(۱۹-۹) محبب تنش نرماله برای هر سه آلیاژ92(۹-۹۱) تغیرات ($\frac{VimpT}{G}$) برحبب تنش نرماله برای هر سه آلیاژ93(۱۹-۹۱) تغیرات ($\frac{VimpT}{G}$) برحبب تنش نرماله برای هر الی ((-۹)) ثابت برای هرسه94(۱۹-۹۱) تغیرات ($\frac{VimpT}{G}$) برحبب تنش نرماله برای الی ((-۹)) ثابت برای هرسه95(۹-۹۱) تغیرات ($\frac{VimpT}{G}$) برحسب آلی برحسب تنش نرماله برای آلیاژهای ((-۹۰) مرسه94(۱۹-۹۱) تغیرات ($\frac{VimpT}{G}$) برحبال مراله برای هر	94	شکل (۴–۴) تصویر میکروسکوپ نوری آلیاژ MRI153+0.85Sn
80MRI153+0.85Sn الگوی پراش اشعه X آلیاژ MRI153+0.85Sn81MRI153+1.8Sn الگوی پراش اشعه X آلیاژ MRI153+1.8Sn یه همراه طیف MRI153+1.8Sn ینشان داده شده82(٩-۴) نتایج SEM آلیاژ SEM به همراه طیف EDX فازهای نشان داده شده84کل (٩-۴) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn یه همراه طیف MRI153+1.8Sn ینشان داده شده85کل (٩-۴) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn یه همراه طیف MRI153+1.8Sn ینشان داده شده84(٩-۴) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn یه معراه طیف MRI153+1.8Sn ینشان داده شده85کل (٩-۴) تغییرات عمق فرورونده برحسب زمان در دمای C مالادر تنش های نرماله ($^{0}/_{G}$)86کل (٩-۴) تغییرات می فرورونده برحسب زمان در دمای C مالادر تنش های نرماله ($^{0}/_{G}$)87سیندان (الف) آلیاژ MRI153+0.85Sn ، MRI153+0.85Sn مالات تحت N/۰88 $^{0}/_{0}$ (الف) C (لف) C (لف) C (سیندان کالیاژ MRI153+0.85Sn ، MRI153+0.85Sn مالات تحت N/۰80مختلف (الف) آلیاژ MRI153+0.85Sn ، MRI153+0.85Sn مختلف (الف) آلیاژ (14-۲۱) یو معدان ماله در دمای C (سیندان در خان در دمای C (سیندان در ماله در C) مختلف (الف) آلیاژ در MRI153+0.85Sn ، MRI153+	9 4	شکل(۴-۵) نتایج SEM آلیاژ MRI153+0.85Sn به همراه طیف EDX فازهای نشان داده شده
کل (۹-۳) تصویر میکروسکوپ نوری آلیاژ MRI153+1.8Sn MRI153+1.8Sn MRI153+1.8Sn کل (۹-۴) تعییر میکروسکوپ نوری آلیاژ MRI153+1.8Sn یفت EDX فاز های نشان داده شده کل (۹-۹) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn MRI153+1.8Sn MRI153+1.8Sn کل (۹-۴) انگوی پراش اشعه X آلیاژ MRI153+1.8Sn MRI153+1.8Sn در دمای 2° (۹/-۹) انگوی پراش اشعه X آلیاژ MRI153+1.8Sn MRI153+1.8Sn کا (۹-۴) انگوی پراش اشعه X آلیاژ MRI153+1.8Sn MRI153+1.8Sn MRI153+1.8Sn در دمای 2° (۹/-۱) نغیرات عمق فرورونده بر حسب زمان در دمای 2° (۹/-۱) نغیرات ماله ($7/_{G}$) کل (۱۹-۹) انگوی پراش اشعه X آلیاژ MRI153 (جا ۲۵) الیاژ MRI153+0.85Sn MRI153+1.8Sn در داراف) آلیاژ (۱۹-۹) منحنی خزش آلیاژ MRI153+0.85Sn الا (۲) الیاژ MRI153+0.85Sn و MRI153+1.8Sn در $7/_{\circ}$ (الف) 2° (۹/-۱) نخیرات نرخ کرنش خزشی بر حسب زمان در دمای 2° (۲) ۲۱۷ تحت تنش های نر ماله ($7/_{O}$) مختلف (الف) آلیاژ MRI153) بر حسب تنش نر ماله برای $(7/_{O})$ مختلف (الف) آلیاژ MRI153+0.85Sn ($7/_{O}$ MRI153+1.8Sn در دمای 2° ($14-10$) تغییرات نرخ کرنش خزشی بر حسب زمان در دمای 2° ($14-10$) تغییرات نرخ کرنش خزشی بر حسب زمان در دمای ($10{O}$) ثابت برای هر ماله ($10{O}$) مختلف (الف) آلیاژ MRI153 ($10{O}$) بر حسب تنش نر ماله برای هر سه آلیاژ ($14{O}$) ثابت برای هرسه $10{O}$ ($14{O}$) تغییرات نرخ کرنش خزشی نر ماله برای هر سه آلیاژ ($14{O}$) ثابت برای هرسه $10{O}$ ($14{O}$) تغییرات نرخ کرنش خزشی نر ماله برای هر سه آلیاژ ($14{O}$) ثابت برای هرسه $10{O}$ ($14{O}$) تغییرات نرخ کرنش خزشی نر ماله برای هر مه الیاژ ($14{O}$) ثابت برای هرسه $10{O}$ ($14{O}$) تغییرات نرخ کرنش خزشی نر ماله برای هرسه آلیاژ ($14{O}$) ثابت برای هرسه ($14{O}$) تغییرات نرخ کرنش خزشی نر ماله بر حسب تنش نر ماله برای آلیاژهای ($14{O}$) الرا۱۰) تغییرات نرخ کرنش خزشی نر ماله بر حسب تنش نر ماله برای آلیاژهای ($14{O}$) شابت برای هرسه ($14{O}$) رو ($14{O}$) رو ($14{O}$) رو ($14{O}$) را ($14{O}$) رو (14	60	شکل (۴–۶) الگوی پراش اشعه X آلیاژ MRI153+0.85Sn
کل (۴–۹) نتایج SEM آلیاژ NRII53+1.8Sn به همراه طیف EDX فازهای نشان داده شده ۶۶ کل (۴–۹) الگوی پراش اشعه X آلیاژ MRII53+1.8Sn MRII53+1.8Sn یکل (۴–۹) الگوی پراش اشعه X آلیاژ ($^{\sigma}/_{G}$) مکل (۴–۹) انگیر تعمق فرورونده بر حسب زمان در دمای C° ۷۵ (۱۰–۹) تغییرات عمق فرورونده بر حسب زمان در دمای C° ۷۵ (۱۰–۹) تغییرات عمق فرورونده بر حسب زمان در دمای C° ۷۵ (۱۰–۹) تغییرات محق فرورونده بر حسب زمان در دمای C° ۷۵ (۱۰–۹) تعار ($^{\sigma}/_{G}$) (الف) آلیاژ MRII53+1.8Sn (به SSSn (ا۲–۱۵) نحت ۸۲۰ (۱) منحنی خزش آلیاژ MRII53 (ب) MRII53+0.8SSn (MRII53 (ب) ۲۵ (۱) منحنی خزش آلیاژ ۲۱۷۵ (۱۹۰۰) محق (۱۹–۹) منحنی خزش آلیاژ ۲۱۷۵ (۱۹۰۰) محق (۱۹–۹) معیرات نرخ کرنش خزشی بر حسب زمان در دمای C° ۷۵ (۱۹۰۰) تعییرات نرخ کرنش خزشی بر حسب زمان در دمای C° ۷۵ (۱۹۰۰) تحت تنش های نر ماله ($^{\sigma}/_{G}$) مختلف (الف) آلیاژ MRII53+1.8Sn (به SSSn (MRII53+1.8Sn (م) ۵ (۱) محق (1) معیرات نرخ کرنش خزشی بر حسب زمان در دمای C° (۲) معیرات ($^{\sigma}/_{G}$) بر حسب تنش نرمانه در دمای C° (۲) تعییرات ($^{\sigma}/_{G}$) بر حسب تنش نرمانه در دمای C° (۲) تعییرات ($^{\sigma}/_{G}$) بر حسب تنش نرمانه برای هر سه آلیاژ (($^{\sigma}/_{G})$) مختلف (الف) آلیاژ MRII53+1.8Sn (به SSS) (($^{\sigma}/_{I)$) مختلف (الف) آلیاژ ($^{\sigma}/_{G}$) بر حسب تنش نرمانه برای هر سه آلیاژ ($^{\sigma}/_{G}$) مختلف (الف) آلیاژ ($^{\sigma}/_{G}$) بر حسب تنش نرمانه برای هر ما آلیاژ ($^{\sigma}/_{G}$) ایب برای هر سه آلیاژ ($^{\sigma}/_{G}$) ($^{\sigma}/_$	9 9	شکل (۴–۷) تصویر میکروسکوپ نوری آلیاژ MRI153+1.8Sn
کل (۴–۹) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn MRI153+1.8Sn کل (۴–۹) الگوی پراش اشعه X آلیاژ ($^{0}/_{G}$) کل (۴–۱۰) تغییرات عمق فرورونده برحسب زمان در دمای C° ۷۹ در تنش های نرماله ($^{0}/_{G}$) کل (۴–۱۰) تغییرات عمق فرورونده برحسب زمان در دمای C° ۷۹ در تنش های نرماله ($^{0}/_{G}$) محلف (الف) آلیاژ MRI153 +1.8Sn (ب) آلیاژ MRI153 +0.85Sn العتام (ج) آلیاژ MRI153 +0.85Sn در ۲۱۶ محت ۲۰۲۸ حت ۲۰۲۸ و ۲۰۲۸ تحت MRI153 +1.8Sn تحت ۲۱۸ (ب) ۲۰۵ محتی خزش آلیاژ MRI153 +0.85Sn العال (ج) ۲۰۸ محتی خزش آلیاژ ۲۱۹۵ می ۲۱۷ محت MRI153 الحق (ج) ما ۲۱۷ محت محتی محزش آلیاژ ۲۱۹۵ محتی (ما ۲۰۹ محتی محزش آلیاژ ۲۱۹۵ محت ۲۱۷ محت (ما ۲۰ محت محتی محزش آلیاژ ۲۱۹۵ محت ۲۱۷ محت ۲۱۷ محت ۲۱۷ محت (م) محتلف (الف) C° (ما محتل محت محت محزش محت محتنش های نرماله محت محت محتنش های نرماله (C) (الف) C° (ال	9 9	شکل(۴–۸) نتایج SEM آلیاژ MRI153+1.8Sn به همراه طیف EDX فازهای نشان داده شده
کل (۴-۱۰) تغییرات عمق فرورونده برحسب زمان در دمای ۵ [°] ۱۹۷ در تنش های نرماله (^۵ / _G) تلف (الف) آلیاژ MRI153 (ب) آلیاژ MRI153+0.85Sn اج) اییاژ MRI153+1.8Sn تحت ۲۰٪ کل (۴-۱۱) منحنی خزش آلیاژ MRI153 می الات الات MRI153+0.85Sn او MRI153+1.8Sn تحت ۲۰٪ م ⁰ / ₇ (الف) ۲۰ [°] ۲۱۵ (ب) ۲۱۷ [°] ۲۱۷ [°] ۲۱۷ [°] ۲۱۷ [°] ۲۰۰ ۲۰۰۰ ۲۰۰۰ [°] ۲۱۷ [°] ۲۰۰۰ [°] ۲۱۰۰ [°] ۲۰۰۰ [°] ۲۱۰۰ [°] ۲۰۰۰ [°] ۲۱۰۰ [°] ۲۱۰۰۰ [°] ۲۱۰۰۰ [°] ۲۱۰۰ [°] [°] ۲۱۰۰۰ [°] [°] ۲۱۰۰۰	9V	شکل (۴–۹) الگوی پراش اشعه X آلیاژ MRI153+1.8Sn
۶۸ستلف (الف) آلیاژ MRI153 +1.8Sn (ب) آلیاژ MRI153 +0.85Sn (ب) TMRI153 تحت MRI153 تحت MRI153 و MRI153 +0.85Sn (MRI153 تحت ۲۸۰)۶۸کل (۹–۱۱) منحنی خزش آلیاژ NRI153 +0.85Sn (MRI153 تحت تنش های نرماله۶۸ 0 (الف) C (ب) ۲۱۷ °C (ب) ۲۱۷ °C (مان در دمای C °C (مالف) T۱۷ °C (ماله۶۸کل (۹–۱۱) تغییرات نرخ کرنش خزشی بر حسب زمان در دمای MRI153 +0.85Sn (ماله۶۸۲۱۷ °C (ب) ۲۱۷ °C (ماله۶۸کل (۹–۱۱) تغییرات نرخ کرنش خزشی بر حسب زمان در دمای MRI153+0.85Sn (ماله۶۸۲۱۷ °C (ماله) آلیاژ MRI153 (م) MRI153 (م) ۲۱۷ °C (ماله۶۸۲۰۹ (ماله) آلیاژ (ماله) (ماله) (م) مختلف (الف) آلیاژ MRI153 (م) ۲۱۷ °C (ماله۶۸۲۰۹ (م) مختلف (الف) آلیاژ MRI153 (م) ۲۱۷ (م) آلیاژ (ماله۶۸۲۰۹ (م) مختلف (الف) آلیاژ MRI153 (م) مختلف (الف) آلیاژ (م) مختلف (الف) آلیاژ (ماله۶۸۲۰۹ (م) مختلف (الف) آلیاژ (م) MRI153 (م) مختلف (م) ماله (م) مختلف (الف) آلیاژ (م) مختلف (الف) آلیاژ (م) مختلف (م) مختلف (الف) آلیاژ (م) ماله برای هر سه آلیاژ۶۸۲۰۹ (م) ماله برای الیاژ (م) ماله برای آلیاژ (م) ماله برای آلیاژ (م) ماله (م) م) ثابت برای هرسه۶۸۲۰۹ (م) ماله برای آلیاژ (م) ماله برای آلیاژ های MRI153 (م) ماله۶۸۲۰۹ (م) ماله برای آلیاژ (م) ماله برای آلیاژ (م) ماله برای آلیاژ های (م) ماله۶۸۲۰۹ (م) ماله بر حسب تنش نرماله برای آلیاژ های (م) ماله۶۸۲۰۹ (م) ماله بر حسب تنش نرماله برای آلیاژ های (م) ماله۶۸۲۰۹ (م) ماله برای آلیاژ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله۶۸۲۰۹ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله۶۸۲۰۹ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله برای آلیاژ م) ۲۰۹ (م) ماله۶۸۲۰۹ (م) ماله برای ماله برای (م) ماله برای م) ۲۰۹ (شکل(۴–۱۰) تغییرات عمق فرورونده برحسب زمان در دمای C°۱۹۷در تنش های نرماله (^۳ / _G)
کل (۹–۱۱) منحنی خزش آلیاژ MRI153 ، MRI153 و MRI153+0.85Sn سند MRI153 تحت ۲۸۰ مندی خزش آلیاژ MRI153 مندان الف) 0 (الف) ماله 0 (الف) آلیاژ MRI153 برحسب زمان در دمای 0 (الف) آلیاژ MRI153 (ب) MRI153 (ب) MRI153 (ب) آلیاژ MRI153 (ب) مختلف (الف) آلیاژ 0 (الف) آلیاژ MRI153 (ب) آلیاژ MRI153 (ب) آلیاژ (با الف) آلیاژ (با الف) آلیاژ MRI153 (ب) آلیاژ (با الف) (با الف) (با الف) آلیاژ (با الف) آلیاژ (با الف) آلیاژ (با الف) (با الف) (با الف) آلیاژ (با الف) آلیاژ (با الف) (با الف) آلیاژ (با الف) (بالف) (۶٨	مختلف (الف) آلياژ MRI153 (ب) آلياژ MRI153+0.85Sn (ج) آلياژ MRI153+1.8Sn
۶۸ ۲۱۷°C (ب) ۲۹۷°C (ب) ۲۹۷°C (ب) ۲۵% ۶۵ ۲۱۵ ۲۰۵ تخییرات نرخ کرنش خزشی برحسب زمان در دمای ۳۵٬۲۵ تحت تنش های نرماله ۶۸ ۲۱۰۰ تغییرات نرخ کرنش خزشی برحسب زمان در دمای ۳۵٬۲۵ (ج) آلیاژ MRI153+1.8Sn ۶۵ ۲۰٫۵) مختلف (الف) آلیاژ MRI153 (ب) آلیاژ MRI153+0.85Sn (ج) آلیاژ MRI153+1.8Sn (ج) مختلف (الف) آلیاژ (سیسه ۲۵ ۲۰۰۰) ۶۵ ۲۰٫۵) مختلف (الف) آلیاژ MRI153 ۶۵ ۲۰٫۵) مختلف (الف) آلیاژ ۲۰٫۵) مختلف (ماله برای هر سه آلیاژ		شکل(۴–۱۱) منحنی خزش آلیاژ MRI153 ، MRI153 و MRI153+1.8Sn تحت ۸۲/
کل (۴–۱۲) تغییرات نرخ کرنش خزشی بر حسب زمان در دمای $^{\circ}$ ۲۱۷ [°] C تحت تنش های نرماله (σ/σ) مختلف (الف) آلیاژ MRI153 (ب) آلیاژ MRI153+0.85SN (ج) آلیاژ 1.8Sn+1.8SN (σ/σ) مختلف (الف) آلیاژ ($\frac{V_{imp}T}{G}$) بر حسب تنش نرماله برای هر سه آلیاژ کل (۴–۱۴) تغییرات ($\frac{V_{imp}T}{G}$) بر حسب تنش نرماله برای هر اله (σ/G) ثابت برای هر سه اژ	۶ ۸	• = ۴, (الف) ۲۱۹٬۰۲، (ب) ۲۱۷٬۰۲
۲۹ (م. ۲۹ (م. ۲۰ (م.		شکل (۴–۱۲) تغییرات نرخ کرنش خزشی برحسب زمان در دمای C ^o ۲۱۷ تحت تنش های نرماله
۷۲ ۲۰۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰۰ ۲۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰ ۲۰۰۰۰۰۰ ۲۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰ ۲۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	۷۱	(σ/G) مختلف (الف) آلياژ MRI153+1.8Sn (ب) آلياژ MRI153+0.85Sn (ج) آلياژ (σ/G).
کل (۴–۱۴) تغییرات (^{Vimp} G) بر حسب ۲/۲ تحت تنش های نرماله (σ/G) ثابت برای هرسه اژ	٧٢	شکل (۴–۱۳) تغییرات (<u>^VimpT)</u> بر حسب تنش نرماله برای هر سه آلباژ
کل (۲۰ ۲۰) کیپیرات (_G) ساله برخسب ۲۰٫۲ کیک کس مای ترمانه (۲۰ ۲۰) کیک برای مراله ۱۴		$ = \sum_{n=1}^{\infty} \frac{ \nabla f(G) }{ \nabla f(G) } = \sum_{n=1}^{\infty} \frac{ \nabla f(G) }{ $
کل (۴–۱۵) تغییرات نرخ کرنش خزشی نرماله برحسب تنش نرماله برای آلیاژهای MRI153، MRI153+0.854 و MRI153+1.8Sn در حالت ریختگی کل (۴–۱۶) ریزساختار آلیاژ MRI153+1.8Sn پس از خزش در دمای ^۵ ° ۲۱۷ تحت ۲۰/۰۲ه م	٧۴	شاط (۱۹۹۴) کیلیزاف (_G) ۱۸۱ بر مشب ۱۹۱۲ کخت کیس مالی کرمانه (۵) کابک برای مترسه آلما:
کل (۴–۱۵) تغییرات نرخ کرنش خزشی نرماله برحسب تنش نرماله برای آلیاژهای MRI153، MRI153+0.854 و MRI153+1.8Sn در حالت ریختگی کل (۴–۱۶) ریزساختار آلیاژ MRI153+1.8Sn پس از خزش در دمای ^۵ ° ۲۱۷ تحت ۲۰/۰۲ م	• ,	
MRI153+0.854 و MRI153+1.8Sn در حالت ریختگی کل (۴–۱۶) ریزساختار آلیاژ MRI153+1.8Sn پس از خزش در دمای ^۵ ° ۲۱۷ تحت ۲۰/۰۲ م		شکل (۴–۱۵) تغییرات نرخ کرنش خزشی نرماله برحسب تنش نرماله برای آلیاژهای MRI153،
کل (۴–۱۶) ریزساختار آلیاژ MRI153+1.8Sn پس از خزش در دمای ^o C ۲۱۷ تحت ۰۲/۰۲۸ م م	٧۶	MRI153+0.85Sn و MRI153+1.8Sn در حالت ريختگی
σ		شکل (۴–۱۶) ریزساختار آلیاژ MRI153+1.8Sn پس از خزش در دمای C° ۲۱۷ تحت ۰/۰۲۸=
······································	٧٨	

	شکل (۴–۱۷) تصویر میکروسکوپ نوری آلیاژ MRI153 در زیر فرورونده پس از خزش در دمای
۷٩	^o /G =۰/۰۳ و تحت تنش ^o /G =۰/۰۳ در دو بزرگنمایی متفاوت
	شکل (۴–۱۸) تصویر میکروسکوپ الکترونی آلیاژ MRI153 در زیر فرورونده پس از خزش در
٨٠	دمای °C و تحت تنش °C/G=۰٬۰۳ در دو بزرگنمایی متفاوت
۸۱	شکل (۴–۱۹) طیف EDS گرفته شده از نقاط A و B در شکل (۴–۱۸)–الف
	شکل (۴–۲۰) تصویر میکروسکوپ نوری آلیاژ MRI153+0.85Sn در زیر فرورونده پس از خزش
۸۲	در دمای ۲۱۷ و تحت تنش ۳۰/۰۴= ⁰ / _G در دو بزرگنمایی متفاوت
	شکل (۴–۲۱) تصویر میکروسکوپ الکترونی آلیاژ MRI153+0.85Sn در زیر فرورونده پس از
۸۳	خزش در دمای ^o C ۲۱۷ و تحت تنش ^o / _G =۰/۰۳ در دو بزرگنمایی متفاوت
٨۴	شکل (۴–۲۲) طیف EDS گرفته شده از نقاط A و B در شکل (۴–۲۱)-الف
	شکل (۴–۲۳) تصویر میکروسکوپ نوری آلیاژ MRI153+1.8Sn در زیر فرورونده پس از خزش
٨۵	در دمای ۲۵ ۲۱۷ و تحت تنش ⁶ // <i>G</i> =۰/۰۳
	شکل (۴–۲۴) تصویر میکروسکوپ الکترونی آلیاژ MRI153+1.8Sn در زیر فرورونده پس از
٨6	خزش در دمای ^o C ۲۱۷ و تحت تنش ^o /G=۰/۰۳ در دو بزرگنمایی متفاوت
٨٨	شکل (۴–۲۵) نحوه قفل شدن مرزدانه توسط یک فاز با جهت گیری و شکل متفاوت

فصل اول مقدمه

1-1- مقدمه

امروزه استفاده از قطعات ریختگی منیزیم در صنایع خودروسازی به منظور کاهش مصرف سوخت و کاهش انتشار گازهای آلاینده با رشد سریعی مواجه شده است. با وجود اینکه آلیاژهای گوناگونی از منیزیم توسعه یافته است، هنوز آلیاژهای سری AZ یکی از قدیمی ترین و پرمصرف ترین آلیاژهای منیزیم در صنایع خودروسازی است. این موضوع به دلیل خواص مکانیکی و شیمیایی مناسب این آلیاژ از یک سو و قابلیت بالای ریخته گری آن از سوی دیگر است.

در حال حاضر آلیاژ (Mg-9Al-0.8Zn-0.2Mn) مهم ترین آلیاژ پایه منیزیم است بطوریکه هم اکنون بالغ ۹۰٪ از قطعات ریختگی منیزیمی از این آلیاژ تولید می شوند. علیرغم خواص خوب فوق الذکر،عیب اصلی این آلیاژ استحکام تسلیم پایین و خواص خزشی نامطلوب در درجه حرارتهای بالاتر از ۲۰° ۱۲۰ است که باعث محدودیت استفاده این آلیاژ در کاربردهای دما بالا می شود.

تحقیقات زیادی جهت تولید آلیاژهای ریختگی منیزیم با استحکام بالا در دهه گذشته انجام شده است. در Mg-Al-Sr ،Mg-Al-Ca-RE ،Mg-Al-Ca و آلیاژهای Mg-Al-Sr ،Mg-Al-Ca-RE ،Mg-Al-Ca و مین راستا آلیاژهای جدیدی بر پایه سیستمهای آلیاژهای Sn-Zn و Sn-Zn ممانند ALS2 ، ALS2 ، ALS2 ، مانند Sn-Zn استحکام گرم زیاد، استفاده از این آلیاژها به دلیل خواص ریخته گری نامطلوب، ازقبیل سیالیت کم و همچنین حساسیت زیاد به ترک گرم محدود شده است.

با توجه به استحکام کششی خوب در دمای اتاق، قابلیت ریخته گری عالی و خواص خوردگی مناسب آلیاژ AZ91 در مقایسه با سایر آلیاژهای ریختگی منیزیم، تحقیقات بسیاری جهت بهبود خواص خزشی این آلیاژ با استفاده از عناصر آلیاژی انجام شده است. گزارش شده است که رفتار خزشی آلیاژ Mg-Al-Zn می تواند به وسیله افزودن عناصری از قبیل Si ،Sr ،RE ،Ca ،Sb و از طریق تشکیل ترکیبات بین فلزی پایدار در دمای بالا بهبود پیدا کند.

در سالهای اخیر شرکت فولکس واگن یک آلیاژ ریختگی جدید تحت نام اختصاری MRI153 را معرفی کرده است. این آلیاژ از یک سو حاوی۹٪ وزنی آلومینیوم و۱٪ وزنی روی به منظور تضمین کردن استحکام تسلیم و قابلیت ریخته گری است. از سوی دیگر حضور ۱٪ وزنی کلسیم و۰/۱٪ وزنی استرانسیم با تشکیل ترکیبات بین فلزی پایدار در مرزدانه و درون دانه سبب بهبود مقاومت خزشی آلیاژ گردیده است.

همچنین قابل ذکر است که کلسیم در این آلیاژ باعث کاهش اکسیداسیون در هنگام ذوب، افزایش خواص عملیات حرارتی پذیری، افزایش مقاومت به خوردگی و بهبود خواص مکانیکی در دمای بالا می شود. با وجود اثرات مثبت کلسیم بر خواص خزشی این آلیاژ، کاهش سیالیت و افزایش حساسیت به ترک گرم نیز از اثرات جانبی حضور این عنصر می باشد.

در این پژوهش به بررسی تاثیر قلع بر ریزساختار و رفتار خزش فروروندگی آلیاژ MRI153 پرداخته شده است. در واقع انتظار میرود که قلع با تشکیل فازهای پایدار حرارتی با منیزیم و کلسیم بتواند خواص خزشی را بهبود دهد.

پژوهش حاضر از پنج فصل مقدمه، مروری بر منابع، روش تحقیق، نتایج و تحلیل آنها و فصل نتیجه گیری تشکیل شده است. در فصل دوم یا مروری بر منابع به معرفی آلیاژ MRI153 و ریزساختار آن به همراه آلیاژهای منیزیم با مقاومت خزشی بالا پرداخته شده است. تأثیر قلع بر خواص مکانیکی و ریزساختار آلیاژهای منیزیم نیز مورد بحث قرار گرفته است.

در فصل سوم روش تحقیق تشریح گردیده است. در این فصل روش تولید آلیاژها و آزمایشات انجام گرفته شرح داده شده است. همچنین خواص خزشی آلیاژها با روش خزش فروروندگی با فرورونده استوانهای در دماها و تنش های مختلف مورد تحقیق قرار گرفته است. همچنین ریز ساختار آلیاژها با استفاده از میکروسکوپ نوری و الکترونی روبشی بررسی شده است.

در فصل چهارم نتایج پژوهش مورد بحث و بررسی قرار گرفته است. در ابتدا ترکیب شیمیایی و ریزساختار آلیاژها ارائه شده است. در ادامه با استفاده از معادلات تغییر فرم و محاسبه انرژی اکتیواسیون و توان تنش، مکانیزم خزش آلیاژها مشخص شده است. همچنین با بررسیهای ریزساختاری پس از خزش، مکانیزم کاهش مقاومت خزشی آلیاژ MRI153 در حضور قلع شرح داده شده است. در فصل پنجم نتایج تحقیق جمع بندی و چند تحقیق برای ادامه کار ارائه و پیشنهاد شده است.

فصل دوم مروری بر منابع