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ABSTRACT

ALMOST PERFECT AND GENERALIZED
PERFECT RINGS

BY

AFSHIN AMINI

Bican et al. in [9] have proved that every module over an arbitrary ring
has a flat cover. In this thesis we shall study rings over which flat covers.
of finitely generated modules are projective. We call a ring R right almost
perfect if every flat right R-module is projective relative to R. It turns out
that a ring R is right almost perfect if and only if it is semiperfect and flat
covers of ﬁmtely generated right R-modules are finitely generated, equivalently,
ﬂat covers of finitely generated right R-modules are projective. We shall show
that the class of almost perfect rings is properly between the classes of perfect
" and semiperfect rings. We also outline some new characterizations of perfect
rings. For example, we show that a ring R is right perfect if and only if every
finitely cogenerated right R-module has a projective cover.

Also we call a ring R right generalized perfect if every right R-module is
a superfluous epimorphic image of a flat right R-module. We shall investigate
some properties of these rings and show that a commutative é;eneralized per-
fect ring is a max ring. Finally, we find some classes of modules which are

superfluous epimorphic images of flat modules.

IV
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INTRODUCTION

Since Eckmann and Schopf in [14] proved the existence of injective envelopes for

modules over any associative ring and Matlis in [34] gave the structure theorem

of injective modules over Noetherian rings, the notions of injective modules and
injective envelopes (injective hulls) have played an important role in the theory
of modules and rings and have had a great impact on homological algebra
and commutative algebra. In an attempt to dualize the concept of injective
envelopes, Bass in [7] successfully studied projective covers of modules and
initiated the study of perfect rings. These rings possess nice theoretlcal and
homological properties. The harmony between the global charaeteriiations
and ‘ehe internal descriptions of these rings exhibits the beauty and the nature

of structures in algebra.

Motivated by injective envelopes and projective covers, several other no-
tions of envelopes and covers have been defined and investigated. For instance,
Warfield in [39] studied the pure injective envelopes of modules and Enochs in
[17] defined the torsion free coverings of modules and proved their existence
over any integral domain. Con51der1ng various kinds of envelopes and covers,
there is a natural question: How can we define envelopes or covers in a gen-
eral setting? Enochs in [18] first noticed the categorical version of injective

envelopes and made a general definition of envelopes and covers by diagrams
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for a given class of modules.

Let © be a class of R-modules which is closed under isomorphic copies.
A homomorphism f : F — M with F € Q is called an Q-precover of the
R-module M if for each homomorphism g : G — M with G € {2, there exists
h:G — F such that fh = g. An Q-precover f : F — M is said to be an Q—
cover if every endomorphism [ of F' with fl = f is an automorphism of F. An
Q-(pre)envelope of a module is defined dually. Now if {2 is the class of all flat
modules, an Q-cover is usually called a flat cover. Enochs in [18] conjectured
that every module over an associative ring admits a flat cover, because many
properties of flat modules are highly dualized counterparts of those for injective
modules. To prove this conjecture, several authors extensively studied flat
covers and related notions and solved the conjecture in some special cases, see,
for example, [8, 10, 16, 18, 19, 42, 43]. Finally after two decédes, Bican et
al. in [9] proved the existence of flat covers over any associative ring in two
different ways.

This thesis is mainly devoted to ‘study two classes of rings. First, rings over
which flat covers of ﬁniteiy generated modules are projective; second, rings over
which every module is a superfluous ebimorphic image of a ﬂat mociule.

In Chapter 1 we give some general terminologies and preliminary results
which are needed in other chapters. In Chapter 2 we briefly present basic
properties of perfect.and semiperfect rings. Ooncerniﬁg the dual concept of
the statement that “if every finitely generated R-module has a projective cover,
then R is semiperfec " we prove that “a ring R is right perfect in case each
finitely cogenerated right R-module has a projective cover”. Also we study
quasi-perfect rings (which introduced by Camillo and Xue in [11]) and we

shall see that they form a class of rings strictly between the class of perfect
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and semiperfect rings.

We know that if a finitely generated R-module M has a projective cover
@ : P — M, then P is finitely generated (see [4, Lemma 17.17]), however, we
show that for the flat cover this is not the case. In Chapter 3 we introduce a
class of rings (i.e., right almost perfect rings) for which the above holds. An
R-module M is said to be R-injective in case any homomorphism f : [ — M,
where I is a right ideal of R, can be extepded to f : R — M. By Baer’s
r'I‘heorem, any R-injective module is injective (see, for example, [4, Lemma
18.3]). Dually R—proj»ective modules are defined, but R-projective modules
need not be projective. We call a ring R right almost perfect in case all flat
right R-modules are R-projective. Nofe that a ring R is right perfect if and
only if all flat right R-modules are projective. In particular, right perfect rings
are right almost perfect. It turns out that a ring R is right almost perfect if and
only if R is semiperfect and flat covers of finitely generated right R-modules
are finitely generated. Also we show that almost perfectness is not left-right
symmetric and that the class of almost perfect rings is strictly between the .
class of perfect and sem.iperfect rings, meanwhile, it is different from the class
of quasi-perfect rings.

" Bass in [7] called a ring R right perfect if every right R-module is a su-
perfluous epimorphic image of a projective module. HoweVer, we shall replace
the word “projective” by “flat” in Bass’ definition and get some new related
results. In Chapter 4 we say that a module has a G-flat cover, if it is a su-
perfluous epimorphic image of a flat module. Moreover, we call a ring R right
generalized perfect if every right R-module has a G-flat cover and we investi-
gate some properties of these rings. For example, we show that the Jacobson

radical of a right generalized perfect ring is right T-nilpotent. Also it turns out
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that a commutative generalized perfect ring is a max ring. Finally, in Chapter
5 we define minimal G-flat cover of a module and show that if a module has a
G-flat cover, then it has a minimal G-flat cover. Finally we find some classes of
modules which have G-flat covers. For instance, finitely cogenerated modules

and cyclic modules over commutative max rings have G-flat covers.




Chapter 1

 PRELIMINARIES




1 Preliminaries

Throughout this thesis, all rings are associative with identity and all mod-
ules are unitary right modules unless stated otherwise. Homomorphisms be-
tween modules are written and composed on the opposite side of scalars.
Semisimple rings are in the sense of Wedderburn and Artin: these are rings
which are semisimple as right (or left) modules over themselves. By a regular
ring, we mean a ring R such that € xRz for any z € R (i.e., a von Neu-
mann regular ring). For a ring R, let Mod-R denote the category of all right
R-modules and J(R) be the Jacobson radical of R. For a module Mg, the
notation K < M means that K is a submodule of M and K < M means
that K is a superfluous submodule of M in the sense that K + L # M for
any proper submodule L of M. Also K < M means that K is an essential
submodule of M, that is, K N L # 0 for any nonzero submodule L of M. We
write soc(Mg), rad(Mz) and E(Mg) for the socle, the Jacobson radical and

the injective hull of Mg, resI‘)ectively. Note that

rad(Mg) = ﬂ{K : K is a maximal submodule of M} = Z{L : L« M} |
and

soc(Mpg) = Z{K . K is a minimal submodule of M} = ﬂ{L : LM}

For the proof, see [4, Propositions 9.7 and 9.13]. A monomorphism f: M —
N between modules M and N is said to be an essential monomorphism if
im(f) <9 N. Dually, an epimorphism f : M ~— N is said to be a superfluous

epimorphism if ker(f) < M.



Enochs in [18] gave the following general definition of covers and envelopes.

Definition 1.1 Let R be a ring and  be a class of R-modules which is
closed under isomorphic copies. An Q—precoverrof a'm R-module M is a ho-
momorphism ¢ : F — M with F' €  such that for any homomorphism
Y : G — M with G € Q, there exists p, : G — F such that pu = 9. An
Q-precover ¢ : F' — M is said to be an {}-cover if every endomorphism A of F'
with @) = ¢ is an automorphism of F'. Dually, Q-preenvelope and §)-envelope

of an R-module are defined.

If o : F — M is an Q-(pre)cover of M, we usually refer to F' as an -
(pre)cover of M. Now we state some elementary properties of covers which are

needed in the sequel. Note that similar results also hold for envelopes.

Proposition 1.2 Let Fy, F; € Q.

() If 1 : 1 — M and f : F5 — M are two different Q-covers of M,

then there is an isomorphism g : Fy — Fy such that fag = fi.

(b) Let fy : F — M be an Q-cover of M and fo: Fy — M be a homo-
morphism. If there is an isomorphism g : Fy — Fy such that fog = f1,

then fao : Fy — M is an Q-cover of M.

Proof. (a) Since both F; and F; are {)-covers of M, there are homomor-
phisms g: F} — Fyand h: Fp — Fy such that fi = fog and fo = fih. Thus
f1 = fihg and fo'= fogh. By the definition of the Q-cover, gh-and hg are au-
tomorphisms of Fy and F, respectively. Therefore g and h are isomorphismis.

(b) First we show that fp : Fo — M is an {)-precover of M. Let H € Q2

and h: H — M be a homomorphism. Since f : F1 — M is an {)-precover
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of M, there is k : H — Fy such that h = fik = fogk. Now suppose that
| : Fy, — Fy with ful = f5. Thus fig7'l = fig™" and so fig~ g = fi. As
fi:Fy — M isan Q—coverA of M, g~tlg is an automorﬁhism of F; and hence
[ is an autbmorphism of Fy. Therefore. fo: F; — M is an Q-cover of M. [

Suppose that f : F — M is an {)-precover of ‘M and M = My @ M,.
Let p: M — M; and g : M; — M be the natural projection and injection,
respectively. Then pf : F — M; is an Q-precover of M. For,ifg: G — M;
is a homomorphism with G € Q, then gg : G — M. Since f : F' — M is
an Q-precover of M, there is h : G — F such that fh = gg. Therefore,

pfh=pgg=g.

Proposition 1.3 Suppose that M has an Q-cover and g : G — M is an
Q—precovefof M. Then G = G1® Gy where G2 C ker(g) and glg, : G1 — M

is an Q-cover of M.

Proof. Let f : F — M be an -cover of M. There are homomorphisms
h:F —» Gand k: G — F such that gh = f and fk = g. So f= fkh..
Since f : F — M is an Q-cover of M, it follows that kh is an automorphism
of F and so G = im(h) @ker(k). Put G, = im(h) and G = ker(k). As fk =g,
we have Gy C ker(g) and h: F — Gy is an isomorphism with (gle,)h = f-
Therefore, by Proposition 1.2, glg, : Gi — M is an §)-cover of M. O

The proof of the following result is an immediate consequence of the prop-

erties of direct product.
Theorem 1.4 Let ¢; : F, — M; be an Q-precover of M; for any i € I. If
L B €9, then [T oi : [1F; — [ M; is an Q-precover of 1Lier M.

Note that-in Theorem 1.4, even if each ¢; : F; — M; is an -cover, then
[Lic; Fi may fail to be an Q-cover of [T;c; M;. For a counterexample see [43,
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Theorem 1.3.9]. However, if I is a finite set, we have the following result ([43,

Theorem 1.2.10)).

Theorem 1.5 If p; : F; — M; is an Q-cover of M; for 1 <i < n and§) is

closed under finite direct sums, then € p; : @ F; — @ M; is an 2-cover of

D, M;.

A projective cover of an R-module M is an epimorphism ¢ : P — M
where P is a projective R-module and ker(p) < P (i.e., ¢ is a superfluous
epimorphism). Now lef Q be the class of all projective R-modules. Thén we
have the consistency between the notion of projective cover and the notion of

Q-cover for a module M.

" Theorem 1.6 Let Q be the class of all projective right R-modules and let

@ : P — M be a homomorphism with P € Q. Then the following statements

are equivalent:
(a) ¢ : P — M is a projective cover of M;
(b) p: P — M is an Q-cover-of M.

Proof. (a) = (b). Let Q € Qand o : Q@ — M be a homomorphism.
Since ¢ is an epimorphism, by the projectivity of @, there is 'y Q@ — P
with ¢y = . Thus ¢ : P — M is an Q-precover. Now suppose that A
is an endomorphism of P with @A = . Thus im(}\) + ker(¢) = P. Since
ker(p) < P, ) is an epimorphism. By the projectivity of P, there exists
u: P — P with \p = idpv (the identity endomorphism of P). Therefore,
P = im(p) @ ker(A). But A = ¢ implies that ker(\) C ker(yp) < P. Hence
ker(\) = 0 and so A is an automorphism of P. Consequently, ¢ : P — M is

an )-cover of M.




(b) == (a).. There exists an epimorphism % : F' — M for some projective
module F. Since ¢ : P — M is an Q-(pre)cover of M, 1 = A for some
homomorphism A : F — P. Now the surjectivity of ¢ implies that ¢ is an
epimorphism. To show that ker(¢) < P, sﬁppose that ker(p)+L = P for some
L < P. Thus ¢|;, : L — M is an epimorphism. As P is a projective module,
there is u : P —» L C P such that (p|.)p = ¢. Therefore, pp = ¢. Now by
the definition of an Q-cover, u is an automorphism of P and so P = im(p) C L.
Consequently, ¢ : P — M is a superfluous epimorphism and so is a projective

cover of M. O

Remark 1.7 Let Q be the class of all injective R-modules and ¢ : M — E
be a homomorphism with E € Q. Then as in Theorem 1.6 we can show that
@ : M — FE is an Q-envelope of M if and only if it is an injective envelope of

M (ie., @ is an essential monomorphism).

Eckménn and Schopf [14] proved that over any ring evéry module M has
an injective envelope denoted by E(M ).- But for pro jective cover this is not the
case. Bass in [7] called a ring R right pérfe’ct in case every right R-module has a
projective cover. He also gave some internal and homological characteﬁzation,s‘
for these rings. ' ' .

Now let 2 be 1;he class of all flat R-modules. From now on, we call an
Q-cover (or Q-precover) of an R-module M, a flat cover (or flat precover)
of M. Enochs in [18] conjectured that over an arbitrary ring, all modules
have flat covers. Several authors worked on this conjecture, see, for example,
8, 10, 16, 18, 19, 42, 43]. Finally it was solved by Bican et al. in 2001 in two

completely different ways (see [9]).

Theorem 1.8 Let R be a ring. Then any R-module has a flat cover.
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Proof. See [9, Theorem 3]. O
The following result is true for any class €, which is closed under extensions.
However, we prove it for the class of flat modules which also has this property

(Proposition 1.16).

Lemma 1.9 Let ¢ : F — M be a flat cover of the R-module M and
K = ker(p). Then for any flat module G, Extg(G,K) = 0 (i.e., any ezact

sequence of R-modules of the form 0 — K — L — G — 0 splits).

Proof. Let G be a flat R-module. Consider an exact sequence of R-modules
of the form 0 — K - L -2+ G — 0. Let o : K — F be the inclusion

map. Then we have the pushout diagram of the monomorphisms v : K — L

and a: K — F.

0 0
! !

0o — K % F H M — 0
lw Lf !

0 — I - P 2 M — 0
Ip lq
G = G
N
0 0

Note that G and F are flat R-modules and hence P is too. Since p : F' — M
is a flat cover, there is g : P — F such that ¢g = . Hence @gf = of = .
Therefore, gf must be an automorphism of F' and so ¢ = o(gf)™*. Thus
©(gf)"1gh = pgh = oh = 0. Therefore, im ((gf) ™" gh) C ker(yp) = im(a). So
we can define u = a—l(gfl)”lgh : I — K. Therefore, uv = a*(gf) *ghv =

11



a~Y(gf) 'gfa = o 'a = idg. This implies that 0 — K — L — G — 0

splits. U

Definition 1.10 An R-module C is said to be cotorsion if for any flat J-

module F, Exth(F,C) = 0.

By Lemma 1.9, we see that if ¢ : F — M is a flat cover of an R-module
M, then ker(¢p) is a cotorsion module. However, for the converse we have the

following result.

Lemma 1.11 Let F be a flat R-module and ¢ : F — M be an epimor-
phism. Ifker(y) is cotorsion, then ¢ : F — M is a flat precover of M, which

is called a special flat precover.

Proof. Let G be a flat R-module and K = ker(p). Then the exact sequence

0 — K —s F —» M — 0 induces the following exact sequence

0 — Homg(G, K) — Hompg(G, F) — Homg(G, M) — Exth(G, K) = 0.

Therefore, Homg(G, F) — Homg(G, M) is an epimorphism (i.e.; for any

homomorphism « : G —» M, thereis a homomorphism’ A : G — F such that
@)\ = c) and so ¢ : F' — M is a flat precover of M. [

By the elementary properties of the Ext functor, see [37], it is clear that
the-cla,ss of cotorsion modules is closed under extensions, finite direct sums,
arbitrary direct produéts and direct' summands.

A short exact sequence 0 — A %+ B — C — 0 of rigﬁt R-modules is

said to be pure (exact) if

0— AQrM — BRrM — C Qg M — 0
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