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Abstract 

Glycation induced bovine serum albumin in which fibrilogenesis (nano fibrils) 

followed by fluorescence (Thioflavin T) and also by using dynamic light scattering 

(DLS) and transmission electron microscopy (TEM) to achieve the size and morphology 

of fibrils, respectively. A novel electrochemical biosensor for the detection of hydrogen 

peroxide was proposed based on immobilizing poly (alizarin yellow R)/nano-fibris on 

glassy carbon electrode. Cyclic voltammetry (CV) and amperommetry were used to 

confirm the successful stepwise assembly procedure of the biosensor. The 

electrocatalytical behaviors of the sensor were also investigated by cyclic voltammetry 

and amperommetry. Results showed that poly (alizarin yellow R)/ nano-fibs exhibited a 

remarkable electrocatalytic activity for the reduction of hydrogen peroxide under optimal 

conditions. The electrocatalytic response of the sensor was proportional to the hydrogen 

peroxide concentration in the range of (1µM to 2.2 mM) with a limit of detection and 

sensitivity of 0.29µM and 0.024 µA/µM, respectively. The modified electrode showed 

many advantages such as simple preparation, high sensitivity, low detection of limit, 

excellent catalytic activity at physiological pH values and short response time.  

A novel electrochemical sensor for the detection of hydrazine was proposed based on 

immobilizing ZnS/Mn quantum dots and multi wall carbon nanotube (MWCNT) on glassy 

carbon (GC) electrode. Scanning electron microscopy (SEM), Transmission electron 

microscopy (TEM), electrochemical impedance spectroscopy (EIS) , cyclic voltammetry 

(CV) were used to confirm the successful stepwise assembly procedure of the sensor .The 

electrocatalytic behaviors of  the sensor was also investigated by cyclic voltammetry and 

differential puls voltammetry .Tests  showed that hydrazine by (zinc sulfide doped with 

manganese) Quantum Dots /multi wall carbon nanotube (ZnS/Mn QDs-MWCNT) 

exhibited a remarkable electrocatalytic activity for the oxidation of hydrazine. Under 

optimal conditions, the electrocatalytic response of the sensor was proportional to the 

hydrazine concentration in the range of 0.09 to 1.2µM. With a detection limit and 

sensitivity of 28nM and 0.0009µAµM
-1 

. This electrode shows many advantages such as 

simple preparation, high sensitivity, excellent catalytic activity at pH 7 and antifouling 

property toward hydrazine and its oxidation product.                                                                                

A novel electrochemical sensor for the detection of l-cysteine was proposed based on 

immobilizing poly (alizarin yellow R)/carbon quantum dots on glassy carbon electrode. 

Hydrothermal treatment was used to prepare carbon quantum dots (CQDs). Transmission 

electron microscopy (TEM) and FTIR were used for characterization of carbon quantum 



dots. Electrochemical impedance spectroscopy, cyclic voltammetry (CV) and 

amperommetry were used to confirm the successful stepwise assembly procedure of the 

sensor. The electrocatalytic behaviors of the sensor were also investigated by cyclic 

voltammetry and amperommetry. Results showed that poly (alizarin yellow R)/carbon dots 

exhibited a remarkable electrocatalytic activity for the oxidation of l-cysteine under 

optimal conditions. The electrocatalytic response of the sensor was proportional to the l-

cysteine concentration in the range of (0.3 to 3.6µM) and (3.9 to 7.2 µM) with a limit of 

detection and sensitivity of 90 nM and 0.482µA/µM, respectively. The modified electrode 

show many advantages such as simple preparation, high sensitivity, low detection of limit, 

excellent catalytic activity at physiological pH values, short response time, and remarkable 

antifouling property toward l-cysteine and its oxidation product.  

For the first time, a nonenzymatic electrochemical sensor for the detection of lysine was 

proposed based on immobilizing Multi wall carbon nanotube (MWCNT) and Titanium 

oxide nanoparticles (TiO2NPs) on glassy carbon (GC) electrode. Scaning electron 

microscopy (SEM) and electrochemical impedance spectroscopy (EIS) were used to 

confirm the successful stepwise assembly procedure of the sensor. The electrocatalytical 

behaviors of the sensor were also investigated by cyclic voltammetry (CV) and differential 

pulse voltammetry (DPV). The results showed that MWCNT- TiO2NPs exhibited a 

remarkable electrocatalytic activity for the oxidation of lysine. Under optimal conditions, 

the DPV response of the sensor was proportional to the lysine concentration in the range of 

500 to 5500 nanomolar with a detection limit and sensitivity of 390 nM and 0.1795µAµM
-

1
. This electrode show many advantages such as simple preparation without using any 

enzyme special electron transfer mediator or specific reagent, excellent catalytic activity at 

physiological pH values and antifouling property toward lysine and its oxidation product. 

Furthermore, the selectivity of the proposed sensor was tested in the presence of some 

amino acids. 

A novel electrochemical sensor for the detection of insulin was proposed based on 

immobilizing silica nanoparticles/Nafion on glassy carbon electrode. Transmission 

electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry (CV) 

and differential pulse voltammetry (DPV) were used to confirm the successful stepwise 

assembly procedure of the sensor. The electrocatalytical behaviors of the sensor were also 

investigated by CV and DPV. Results showed that nano-SiO2 exhibited a remarkable 

electrocatalytic activity for the oxidation of insulin under optimal conditions. The 

electrocatalytic response of the sensor was proportional to the insulin concentration in the 



range of 10 to 50 nM with a limit of detection and sensitivity of 3.1 nM and 300 pAnM
-1

, 

respectively. The modified electrode show many advantages such as simple preparation 

without using any special electron transfer mediator or specific reagent, high sensitivity, 

excellent catalytic activity at physiological pH values, short response time, and remarkable 

antifouling property toward insulin and its oxidation product.  

 

The electrochemical behavior of chloropromazine at glassy carbon (GC) electrode 

modified with silica nanoparticles/ chloropromazine/ Nafion (SNPs/CPZ/Nf) 

nanocomposite was investigated. The apparent electron transfer rate constant (ks), transfer 

coefficient (α) and surface concentration ( Γc)  were found to be 0.56 s
-1

 ,0.49 and 3.49 × 

10
-7

 molcm
2-

 , respectively. Cyclic voltammetry technique has been used for stabilization 

of nanocomposite on the surface GC electrode. Transmission electron microscopy (TEM), 

electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential 

pulse voltammetry techniques were used to confirm the successful stepwise assembly 

procedure of the electrode. The modified electrode showed electrocatalytic activity toward 

nitrite electro-reduction at 0.12V. The detection limit (signal to noise) and sensitivity are 

7µM and 0.0007µA/µM, respectively. The advantages of the nitrite amperometric detector 

based on the SNPs/CPZ/Nf nanocomposite GCE are a low detection limit, especially a 

reduction in low potential, high sensitivity and inherent stability at pH 2, catalytic activity 

for nitrite reduction antifouling property toward nitrite and its reduction product. 

Furthermore, the proposed electrode was used for determination of nitrite in food samples.    

The electrochemical behavior of chloropromazine as a modifier on the surface of electrode 

was investigated. The electrochemical properties of chloropromazine in to the silica 

nanoparticles/ chloropromazine/ nafion (SNPs/CPZ/Nf) nanocomposite at pH 2-10 were 

investigated at a glassy carbon electrode. Well defined reversible redox couples were 

observed in acidic solutions and irreversible in alkaline solutions. The (SNPs/CPZ/Nf) 

nanocomposite modified electrodes were characterized with a transmission electron 

microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic 

voltammetry (CV). The apparent electron transfer rate constant (ks), transfer coefficient (α) 

and the surface concentration (Γc) were determined by cyclic voltammetry and they were 

about 0.025 s
-1

, 0.50 and 1.26 × 10
-6

 molcm
2-

, respectively. Moreover, electrocatalytic 

oxidation of sulfide on the surface of modified electrode was investigated with cyclic 

voltammetry and amperometry methods at pH=7. The detection limit (signal to noise) and 

sensitivity are 90nM and 0.0021nA/µM, respectively.The prepared modified electrode 



showed several advantages, such as a simple preparation method, high sensitivity, very low 

detection limits and excellent reproducibility. Moreover, the proposed sensor can be used 

for sulfide analysis in water samples.  
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