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Abstract

A cut-point space is defined to be a topological space that is connected but
the removal of any one of its points leaves it disconnected. In this thesis, we
study the cut-point spaces. In chapter 2, it is shown that every cut-point space
has an infinite number of closed points. Also, it is proved that every cut-point
space is non-compact. Moreover, a characterization of the Khalimsky line with
respect to cut-point spaces is given. In chapter 3, topological constructions are
used to obtain new cut-point spaces from the old ones. In chapter 4, cut-point

spaces with special (topological or algebraic) structures are studied. In chapter

5, the covering dimension of cut-point spaces is studied briefly.
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Chapter 1

Introduction




The real line R is a source of intuition in topology. Many other familiar topo-
logical spaces can be obtained from R by topological constructions. It has the
following properties:
(a) it is connected but the removal of any one of its points leaves it discon-
nected;
(b) it 1s metrizable;
(¢) its topology can be generated by a linear ordering.
Conversely. it can be proved that every topological space with the above prop-
erties is homeomorphic to R (see Theorem 4.9). Conditions (b) and (¢) are too
strong. They impose structures on the topological space, so this characteriza-
tion of R seems somchow extrinsic. On the other hand, there is an increasing
interest in studying general topological spaces without special structures or
restricting conditions (such as seperation axioms). A well-known example of
such spaces is the space of prime ideals of a ring with the Zariski topology on it
[1]. Two more recent examples are the Scott topology on the complete partially
ordered sets which appears in denotalional semantics [3] and the Khalimsky
topology on digital k-space (the product Z* of k copies of the Khalimsky line
Z) which is useful in image processing [6,7).

In this dissertation we study the topological spaces that satisfy condition
(a), and call them cut-point spaces. In chapter 2, a cut-point space is defined

again formally and some examples are given. It is shown that every cut-point




space has an infinite number of closed points. Also, it is proved that every
cut-point space is non-compact. To prove the latter, we need the most general
form of the non-cut point existence theorem. The special case of this theorem
for metric topological spaces is proved in [8]. A proof of the theorem for T}
topological spaces can be found in [5] (see also [9]). An irreducible cut-point
space is defined naturally as a cut-point space whose proper subsets are not
cut-point spaces. It is shown that an irreducible cut-point space is necessar-
ily homeomorphic to the Khalimsky line (see Example 2.5 for the definition
of the Khalimsky line). This result may also be viewed as a straightforward
characterization of the Khalimsky line. Objects in n-dimensional digital im-
ages have sometimes been regarded as subspaces of the product of n copies of
the Khalimsky line [6,7]. In chapter 3, we consider the subspaces, quotients,
products, and continuous images of cut-point spaces to obtain new cut-point
spaces from the old ones. We will see that there are many difficulties in this
route. In chapter 4, we return to cut-point spaces with special structures. It
is shown that a cut-point space with the order topology is uncountable, and 1s
homeomorphic to the real line R if it has a countable dense subset. Also it is
shown that if a cut-point space is a topological group. then it is homeomorphic
to R provided that it is locally connected or locally compact. In chapter 3,
the covering dimension of cut-point spaces is studied briefly. It is proved that

if a cut-point space is embeddable in R?, then its covering dimension is equal




to 1.
Throughout this thesis, X denotes a topological space and every subset Y
of X is equipped with 1ts subspace topology. A point z € X is said to be

closed (resp. open) if {z} is closed (resp. open) in X.




Chapter 2

Basic Topological Properties of

Cut-Point Spaces




In this chapter a cut-point space is defined and some examples of cut-point
spaces are given. It is proved that a cut-point space is infinite, and non-
compact. Some other results about the cardinality of cut-point spaces are
obtained. A simple characterization of the Khalimsky line (see Example 2.5)

is presented too.

Definitions and Examples

- 2.1 Definitions. Let X be a non-empty connected topologica.l space. A
ppint z in X is said to be a cut point of X if X\{z} is é,-aisconnected subset of
X. A nonempty connected topological space X is said to be a cut-point space
if every z in X is a cut point of X.

In the following three examples, R? is the Euclidean plane with the stan-
dard topology.

2.2 Example. The union of n straight lines in R? is a cut-point space
if and only if either all of them are concurrent or exactly n — 1 of them are
parallel.

2.3 Example. Let X; = {(z,y) € R*: z <0 and ly| =1} and let
X; = {(z,y) € R? : 2 > 0 and y = sin;}. Define X = X; U Xy. Then X is
a cut-point space. For each z € X, X\{z} has exactly two components. This
example shows that Exercise 15 b) in [2, Chapter IV, § 2} is not true. A similar

example contradicts part ¢) of this exercise. Also this example contradicts part




(1) of Corollary 6.12 in [9].

A “connected ordered topological space” (COTS) is a connected topological
space X with the following property: if Y is a three-point subset of X, there is
a y in Y such that Y meets two connected components of X\{y} (see [6]). Put
Y ={(0,-1),(1,sin1),(0,1)} in Example 2.3 to see that X is not a COTS.

2.4 Example. Let Xo = {(z,0) € R?* : 2 < 0} U {(z,1) € R? : z > 0}
and let for each positive integer n, ¥, = {(3,y) € R*: 0 < y < 1}. Define
X =XoU( G Y,). Then X is a cut-point space.

n=1

A connected topological space is said to have the “connected intersection

property” if the intersection of every two connected subsets of it is connected.

In Example 2.4, let X; = Xo U (U Yon-1) and X, = Xo U (U Y2,). Since
n=1 n=1
X1N X, = Xp is not connected, X does not possess the connected intersection

property. Example 2.4 is a slightly modified version of an example in [11].

2.5 Example (The Khalimsky line). Let Z be the set of integers and let
B={{21—1,20,20+1}:1€Z}U{{20+1}:7 € Z}.

Then B is a base for a topology on Z. The set of integers Z with this topology
1s a cut-point space and is called the Khalimsky line. Each point in Z has
a smallest open neighborhood and the base B is the collection of all such
neighborhoods. It can be easily seen that the Khalimsky line is irreducible in

the sense that no proper subset of it is a cut-point space.




2.6 Example. Let 7 be the standard topology of the real line and let A
be a dense subset of R in the topology 7. Let 7' = {UU (ANV):U €T
and V € T}. Then 7' is a topology on R that is finer than 7. Thus for every
z € R, R\{z} is a disconnected subset of R with the topology 7'. To prove
that R is a cut-point space in the topology 7, it is sufficient to show that R
is connected in that topology. Let R = [U; U (AN W)U [U; U (AN V;)] where
Uy, Vi, Uz and V; are open subsets of R in the topology 7. If [U; U(ANT4)]N
U2 U (AN V)] = (Us 0 U3) U{AN (N U) U (Us 0 Va) U (VN W) = O,
then hNU, = VN =UiNVa =VinV, = 0. Thus (U UW)N (U, U V) =
(UinlU)uinlUy)u(UinVp)u(Vin,) = 0. Since R = (U U W) U(U,U Vy)
and since R is connected in the topology 7, Uy = Vi =0 or U, = V5, = 0.
Therefore Uy U(AN V1) =0 or U, U(ANV2) = 0. This completes the proof of

the connectedness of R in the topology 7.

Cardinality and Non-Compactness of Cut-Point Spaces

Theorem 2.8 is the key theorem of this section. The main theorem of this
section is Theorem 2.14 which implies the non-compactness of cut-point spaces.
Notation 2.7 is adopted from [9].

2.7 Notation. Let Y be a topological space. We write Y = A|B to
mean A and B are two nonempty subsets of Y such that ¥ = AU B and

ANB=ANnB=0.




2.8 Theorem. Let X be a connected topological space, and let z be a cut
point of X such that X\{z} = A|B. Then {z} is open or closed. If {z} is
open, then A and B are closed; if {z} is closed, then A and B are open.

Proof. Since A is both open and closed in X\{z}, there is an open subset
V of X such that A = VN (X\{z}) = V\{z}, and there is a closed subset
F of X such that A = F N (X\{z}) = F\{z}. Thus A = V\{z} = F\{z}.
Since the assumption V = F contradicts the connectedness of X, we have
{z} = V\F or {z} = F\V. If {z} = V\F, then {z} is open and A = F is
closed. If {z} = F\V, then {2} is closed and A = V is open. m

2.9 Corollary. Let X be a connected topological space, and let Y be the
subset of all cut points of X. Then the following statements are obviously
true.

(a) Every nonempty connected subset of Y that is not a singleton, contains at
least one closed point.
(b) If z € Y is open, then every limit point of {z} in Y is a closed point. =

2.10 Lemma. Let X be a connected topological space and let £ be a
connected subset of X. If X\ E = A|B, then AU E is connected.

Proof. If AUF is not connected, then there are subsets C and D of X such
that AU E = C|D. Without loss of generality, we may assume that £ C C.
Then D C A. But (BUC)ND=(BNnD)u(CNnD)=BNnDCBNA=,

and (BUC)ND =(BND)u(CND)=(BNnD)C BNA=0. Therefore,




