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ABSTRACT

STATISTICAL PRESCRIPTION OF
FISSION FRAGMENT ANGULAR DISTRIBUTIONS

by

Mohammad Ali Dehbozorgi

The statistical scission model (SSM) is explained and applied to analog
reactions; 11B,‘ZC,MN+2°9Bi [11].

In this model it is assumed to be analogous to complex particle
evaporation,governed entirely by the phase space available at scission.

In this thesis we calculate variance So” (the most important parameter in
SSM) by using theoretical calculations and experimental data. During the
research, we understand a lot of important notes such as ‘a’=A/8,
‘Ep’=20 MeV, method of calculating Iy, and [y, and so on. In addition
we find D-Factor in form of special functions, Leg. and Gamma, and find
new methods to calculate Sy’ from experimental data.

Before this, in all research using this model, someone had used
approximate parameters, but we try to use absolute values although it
was too difficult.

As it is clear from Fig.6.1-3, we are too successful to use this model for
mentioned reaction (it seems that using SSM for this kind of targets has
being done for the first time).
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CHAPTER ONE
INTRODUCTION

Nuclear physics is a subject of enduring interest and
importance. The nucleus of the atom is a unique example of a
quantum system of relatively few particles displaying both single
- particle and collective motions, and it is governed by three out
of the four forces of nature, namely the electromagnetic, the
strong nuclear and the weak interactions. The radiations from
nuclei have found many applications in medicine, agriculture
and industry, and nuclear fission may become the major energy
source of the future until, perhaps, its place is taken by nuclear
fusion.

Heavy element radioactivity has played a central role in the
development of nuclear science ever since the penetrating
radiations of uranium were discovered by Becquerel at the end of
the last century.

The discovery of artificial radioactivity, the discovery of the
neutron, the preparation of radioactive isotopes by neutron -

induced reactions, the invention of machinery for the

1




accelaration of charged particles, and the discovery of fission -
events which occured in about a ten year span from 1930 to 1940
- led to great qualitative changes in our knowledge of the
structure of nuclei and the nature of radioactivity. In one sense
these developments switched emphasis a way from the heavy
elements as the interest of experimentalists and theorists was
drown to the study of artificial radioactivities of nearly every
element in the periodic system. But the heavy elements were of
unique importance for the phenomenon of nuclear fission
Furthermore, the techniques for the preparation of artificial
redioactivity were just as applicable to the heavy as to the light
elements and were applied to them by many workers. It was a
particularly interesting matter to explore the possiblility of
synthesizing elements above uranium.

And about fission;

The story of the discovery of nuclear fission actually began
with the discovery of the neutron in 1932 by James Chadwick in
England. Shortly there after, Enrico Fermi and his associates in
Jtaly undertook an extensive investigation of the nuclear
~ reactions produced by the bombardment of various elements

with this uncharged particle. The term fission was first used by
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the German physicists Lise Meitner and Otto Frisch in 1939 to
discribe the disintegration of a heavy nucleus into two lighter
nuclei of approximately equal size. The conclusion that such an
unusual nuclear reaction can infact occur was the culmination of
a truly dramatic episode in the history of science, and it set in
motion an extremely intense and productive period of
investigation. Nuclear fission is a complex process that involves
the rearrangment of hundreds of nucleons in a single nucleus to
produce two separate nuclei. A complete theoretical
understanding of this reaction would require a detailed
knowledge of the forces involved in the motion of each of the
nucleons through the process. Since such knowledge is still not
available, it is necessary to construct simplified models of the
actual system to simulate its behaviour and gain as accurate a
description as possible of the steps in the procesé.

The successes and failures of the models in accounting for
the various observations of the fission process can provide new
insights into the fundamental physics governing the behaviour of
real nuclei, particularly at the large nuclear deformations

encountered in a nucleus undergoing fission.




Whenever a fission happenes, we will have two or three
fragments with some neutrons. One way to learn a lot about
fission is considering these fragments angular distribution.
Recently, there has been considerable interest in the angular
distribution of fragments produced by heavy - ion [1,2]. For the
first time, Winheld, Demos and Halpern [3] observed non
isotropic fissin fragment in photo fission of ?**Th and **U. Such
anisotropies were soon reported for fission induced by neutron
and other charged particles [4,5].

Aage Bohr [6] then sketched out an extension of the
transition - state model (TSM) [7] to address angular distributions.
He suggested that when a heavy nucleus captures a neutron or
absorbs a high energy photon, a compound nucleus is formed in
which the excitation energy is distributed among a large number
of degrees of freedom of the nucleus.

The complex state of motion there by initiated may be
described in terms of collective nuclear vibrations and rotations
coupled to the motion of individual nucleons. The compound
nucleus lives for a relatively very long period, usually of the
order of a million times longer than the fundamental nuclear

period, after which it decays by emission of radiation or of
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