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Abstract

In this thesis at first, we write down our triality axioms and introduce the Jordan algebra

d to a triality. We constructed a relation between triality and twisor. Then we

associate
eralgebra associated to

write down our supertriality axioms and introduce the Jordan sup
a supertriality. We constructed a relation between supertriality and supertwisor. Also we
define triality manifolds. It is an open question that what kind of manifolds admit a triality
structure. Finally we define the cross product space. It is shown that V is a cross product

space if and only if dim(V) = 3.
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Introduction and Preliminaries
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1.1 Introduction

Twistor Theory began as a subject in the late 60’s with the appearance of Penrose (1967).
A more definitive statement of its aims and accomplishments was ”Twistor Theory: An
Approach to the Quantisation of Fields and Space-time” (Penrose and MacCallum) which
appeared in 1973. There is a modest point of view which simply holds that the theory
is useful for solving some non-linear equations and the object is to discover which ones,
and there is full-blooded strain which holds that the repeated occurrence and usefulness of
complex analyticity tells one something fundamental about the physical word.

Superalgebras appeared in the context of algebraic topology and homological algebra,
but they endured a new impetuous development due to Physics and attempt to capture
“the supersymmetry” between Bosons and Fermions. Later, superalgebras proved to be
important as purely algebraic objects, they have produced new ideas and methods and
have helped to solve some old algebraic problems.

In this thesis we find a relation between triality and twistor theoryhand we constructed

similar relation between supertriality and supertwistor.

1.2 Introduction to Superalgebra

1.2.1 The Rule of Signs

Definition 1.2.1. A linear space M is called a superspace or Zs-graded vector space if it

admit a decomposition

M = My & M.




CHAPTER 1. INTRODUCTION AND PRELIMINARIES 3

An element of M is called homogeneous of degree € if a € M; we write @ = € € Zg. The

elements of Mg are called even, and those of M1 are called odd.
A subsuperspace is a subspace L C M such that
L= (LNMy)a® (LNM).
If M and N are superspace, we make M & N and M ® N into superspace by setting

(Me&N)i=M;@N;, (M&N)i= ) Mn®Nn.

m-n=1

Definition 1.2.2. A superspace A is called superalgebra if A to be compatible the grading

ab=1a-+0b.

A superalgera A is called commutative if ab = (—1)‘7§ba for homogeneous a, b € A.
The superidentity is obtained from the corresponding identity following the KASPLANSLY
RULE: If two homogeneous adjacent variables a,b are exchanged, then the corresponding

term is multiplied by (—1)53.

Definition 1.2.3. The tensor product of two superalgebras A and B is the superspace

A ® B together with the structure of superalgebras given by
(z®y)(z®t) = (-)Fzz 041,

where ¢,y € A and z,t € B.

1.2.2 Modules over superalgebras
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Definition 1.2.4. Let A be a superalgebra. A left module over A is a superspace M together

with a left action of A on M, bilinear over R or C,

AxM— M,
(@a,m) — am am =a-+m,

such that

a(bm) = (ab)m.

A linear mapping f : N — M of left A-modules is called even if

r—

fln)=mn
flan) =af(n) a€AnéeN.

It called odd if

flan) = (——1)aaf(n).

Let Hom 4 (N, M) be the superspace of A-homomorphisms
Hom (N, M) = Hom4(N, ]iéf)o ® Hom4 (N, M);.

Definition 1.2.5. Let M be an A-module, and define IIM by
a) (IIM)e = Mcy1.
b) Addition in IIM is the same as in M, and a(lIm) = (—1)%II(am). '

A free module M of rank plq is one which is isomorphic to

APl = AP @ (TTA)Y.
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1.2.3 Matrix algebra

Given an A-module morphism AmIn . APle can be regarded, relative to the canonical

bases of A™" and APl as a (p + ) x (m + n) matrix with entries in A,

P X1 Xo ,
X3 Xy
which acts on column vector in A™" from the left. The set Ma[(p + g) % (m + n)] of

such matrices can be graded so as to be naturally isomorphic to the Hom4 (Amin API9) by
decreeing that:

X is even if Xy and X4 have even entries, while X and X3 have odd entries;

X is odd if X7 and X4 have odd entries, while X5 and X3 have even entries.

The set of this form denoted by M4(plg, m|n).

Let f : M — N be a homomorphism of free A-module and X the supermatrix corre-

sponding to f. There exist a natural homomorphism f* : M* — N* with the property
(£ (E))(e) = (DT (f(s),

for all t* € N* , s € M*.

X, X
¥x=1]"" "% ) then
X3 Xy

X{t X‘% for X=0
Xt _Xt -

! 3 for X =1.
x5 Xi
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Here t denotes the usual transpose. A supertranspose has the following properties:

(.B -+ C)st — Bst + CSt,

(Bc)si — (_l)gaostBst.

X1 Xo ) . . o : .
We know X = is invertible if X7 and X, are invertible.
X3 X4
X1 Xo
Definition 1.2.6. For X = we define
Xs X4

BerX = det(X1 — Xo X7 X3)(detXs)™ .

And

trac(X1) — trac(Xs)  for X=0
strac(X) =

trac(X1) +trac(Xy)  for X=1

Definition 1.2.7. Let A ba a commutative algebra, and let My and My be A-modules. An
even or odd morphism of A-modules g : M1 &My — A is called, respectively, an even or odd
bilinear form. A bilinear form can be ‘umlquely identified with the g(m1,ma) = g(my ® ma),
which satisfies the following conditions;

a) g is biadditive and homogeneous;

b) glami, mg) = (—1)a§ag(m1,m2), and g(my, maa) = g{mi, ma)a, fora € A, m; € M;.

We associate to an element m1 € My the mapping mg — g(mi,ma), so we obtain a

morphism My — (Ma)* of the same degree as g. Usually , we will denote this morphism
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by the same letter g. The form is said to be nondegenerate if g : My — (My)* is an

isomorphism.

Let My = My = M, we say that a form is symmetric if g(m,n) = (=1)™g(n, m).

1.2.4 Jordan algebra and Jordan superalgebra

Jordan algebra was initially introduced by Jordan (1933) and further developed by Jordan

et al (1934). Jordan algebra was used for solving early problem of quantum theory.

Definition 1.2.8. A Jordan algebra is an algebra if it satisfies:
1. Commutativity a.b = b.a
2. Jordan identity a*.(b.a) = (a%.b).a

or equivalently the linearization:
(a.b).(c.d) + (a.c).(b.d) + (a.d).(b.c) = ((a.b).c).d + ((a.d).c).b + ((b.d).c).a.

Definition 1.2.9. J = Jg+ Ji is a Jordan superalgebra if it satisfies:
1. Supercommutativity a.b = (—l)agb.a
2. Super Jordan identity
(@.b).(c.d) + (~1)(a.c).(b.d) + (—1)*He(a.d).(b.c) = ((@.b)-c).d+ (—=1)*+¥((a.d).c)-b+

(—1)@+ae+ed((p d).c).a.

1.3 Semi-Riemannian Geometry

We begin with a brief introduction to semi-Riemmanian geometry.
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1.3.1 Manifolds

Let M™ be a smooth n-dimensional manifold. Hence, M™ is a topological space (Hausdorff,
second countable), together with a collection of coordinate charts (U,z) = (U, b, ...,z
(U open in M) covering M such that on overlapping charts (U, z), (V,y), UNV # @, the

coordinates are smoothly related
Y= fiat,. .2, ffeC®,  i=1,...,n

For any p € M, let T,M denote the tangent space of M at p. Thus, TpM is the collection of
tangent vectors to M at p. Formally, each tangent vector X € T,,M is a derivation acting on
real valued functions f, defined and smooth in a neighborhood of p. Hence, for X € T, M,
X (f) € R represents the directional deriviative of f at p in the direction X.

If p is in the chart (U, z) then the coordinate vectors based at p,

d 0 0

Fallr 5l g P
form a basis for TpM. Le., each vector X € T, M can be expressed uniquely as,

0

X = Xi%ﬂp, X' eR.

Here we have used the Einstein summation convention: If, in a coordinate chart, an index

appears repeated, once up and once down, then summation over that index is implied.

Note: We will sometimes use the shorthand: 8; = 5%.

The tangent bundle of M, denoted T'M is, as a set, the collection of all tangent vectors,

TM = | ] T,M.
peEM

To each vector V € TM, there is a natural way to assign to it 2n coordinates,

Vo~ (2.2 VoV,
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where (2!, ...,z") are the coordinates of the point p at which V is based, and (V1,..., V")
are the components of V with respect to the coordinate basis vectors 527]1,, -5%5],,, Ce -5%]1,.
By this correspondence one sees that 7'M forms in a natural way a smooth manifold of
dimension 2n. Moreover, with respect to this manifold structure, the natural projection

map 7:TM — M, Vp — p, is smooth.

1.3.2 Lie algebra

A Lie algebra is a real vector space V endowed with a bilinear map V' X V — V, denoted
by (z,y) — |z,y] and called bracket of X and Y, satisfying the following two properties for
all z,y,z € V:

o Antisymmetry: [z,y] = —[z, y].

e Jacobi identity: [z, [y, z]] + [v, [z, 2]} + [z, [z, 9] = O.

1.3.3 Vector fields

A vector field X on M is an assignment to each p € M of a vector X, € T, M,
peEM— Xy €I M.

If (U, z) is a coordinate chart on M then for each p € U we have

0

Ot o

Xp = Xz(p)

This defines n functions X?: U — R, i =1,...,n, the components of X on (U,z). If for a
set of charts (U, z) covering M the components X* are smooth (X t € C°(U)) then we say

that X is a smooth vector field.
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Let (M) denote the set of smooth vector fields on M. Vector fields can be added

pointwise and multiplied by functions; for X,Y € X(M) and f € C*®(M),
(X + Y)p =Xp+Yp, (fX)p = f(P)Xp-

From these operations we see that %(M) is a module over C*°(M).
Given X € ¥(M) and f € C*°(M), X acts on f to produce a function X (f) € C*°(M),
defined by,
X(£)p) = Xp(f)-
With respect to a coordinate chart (U, z) , X (f) is given by,

_ yidf
X(f) = X =L,

x’L

Thus, a smooth vector field X € X¥(M) may be viewed as a map
X :C®(M) — C®(M), f=X(f)

that satisfies,
(1) X(af +bg)=aX(f) +0X(g9) (a,b€R),
(2) X(fg) = X(f)g+ fX(9)-
Indeed, these properties completely characterize smooth vector fields.

Given X,Y € X(M), the Lie bracket [X,Y] of X and Y is the vector field defined by
[X,Y]:C®(M) — C™(M), (X, Y]=XY -YX,
i.e.
(X, Y)(f) = X(Y(f) - Y(X(/))-

With respect to a coordinate chart, [X, Y] is given by

I CERN:) ¢
XY= (X g =Y 50 5
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. 8
= 7)Y (X)) =—.
(X(¥9) = Y (X))
It is clear from the definition that the Lie bracket is skew-symmetric,
(X, Y] =-[Y, X].

In addition, the Lie bracket is linear in each slot over the reals, and satisfies,

(1) For all f,g € C®(M), X,Y € X(M),
[fX,gY] = fglX, Y]+ fX(9)Y — gY (/) X.
(2) (Jacobi identity) For all X,Y, Z € X(M),

(X, Y], Z]+ [y, 2], X]+ [[2, X]. Y] = 0.

1.3.4 Semi-Riemannian manifolds

Let V be an n-dimensional vector space over R. A symmetric bilinear form b:V xV — R
is

(1) positive definite provided b(v,v) > 0 for all v # 0,

(2) nondegenerate provided for each v # 0, there exists w € V' such that b(v,w) # 0
(i.e., the only vector orthogonal to all vectors is the zero vector).

Note: 'Positive definite’ implies ‘nondegenerate’.

A scalar product on V is a nondegenerate symmetric bilinear form (, ) VXV =R A
scalar product space is a vector space V equipped with a scalar product (,). Let V be a
scalar product space. An orthonormal basis for V is a basis e1,...,€en satisfying,

0 i#J
<€i,€j> = i .
+1 =3,
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or in terms of the Kronecker delta,
(€, €5) = €i0i5 (no sum)

whereg; =x1,i=1,...,n.
Note: Every scalar product space (V, (,)) admits an orthonormal basis.

The signature of an orthonormal basis is the n-tuple (e1,e2,. .. ,€n). It is customary
to order the basis so that the minus signs come first. The index of the scalar product
space is the number of minus signs in the signature. It can be shown that the index is
well-defined, i.e., does not depend on the choice of basis. The cases of most importance

are the case of index 0 and index 1, which lead to Riemannian geometry and Lorentzian

geometry, respectively.

Definition 1.3.1. Let M™ be a smooth manifold. A semi-Riemannian metric (,) on a M

is a smooth assignment to each p € M of a scalar product (,)p on TpM,
p—{,)p: TpM xTp,M — R.

such that the index of {,)p is the same for all p.

By ’smooth assignment’ we mean that for all X,Y € X(M), the function (X, Yy, p—
(Xp,Yp)p , is smooth.

Note: We shall also use the letter g to denote the metric, g = ().

Definition 1.3.2. A semi-Riemannian manifold is a manifold M™ equipped with a semi-
Riemannian metric (,). If {,) has index O then M is called a Riemannian manifold. If (,)

has index 1 then M is called a Lorentzian manifold.




