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ABSTRACT

SHIFT OPERATORS ON BANACH SPACES
BY:
ESMAEIL FOOLADI-HELIELEH

Our major aim in this disscrtation is to study and to discuss the results
obtained in [8]. An operator T' on a Banach space X is called a shift if: (i) T°
is an injective. (il) The range of T' has codimension 1. (i) N, T%(X) = {0}.

J.R. Holub has obtained several results for shift opcrators on C'(X). We
will investigate some questions of Holub and we will obtain cxtensions of many
of his results. In particular, we will show that C'(X,[R) docs not admit a shift
operator if X has only countably many components and cach component is
infinite [Chapter 2].

We will also prove that C'(X, C) docs not admit a shift operator for certain
compact Hausdorff space X. Beside we will show that therc cxists a compact
Hausdorft space X which is not totally disconnected and both C'(X,C) and
C(X,R) admit shift operators. If 1 < p < oo and (X, 32, 1) 1s a o-finite non-
atomic measure space then L'p(p) docs not admit a disjointness preserving
shift operator. We will also sce that £ for 1 < p < oo is the ‘only L (1) space

which admits a disjointness preserving shift opcrator.
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CHAPTER I
INTRODUCTION




1.1. PRELIMINARIES

1.1.1. Definition. The support of a complex (or real) function [ on a
topological space X is the closure of the set {z : f(z) # 0}. The collection
of all continuous complex (or real) functions on X whose support is compact

is denoted by C.(X).

1.1.2. Definition. Let X and Y be two topological spaces; let ¢ : X — YV
be a surjective map. The map g is said to be a quotient map, provided a subset,

U ol Y is open in Y if and only if ¢~*(U) is open in X.

1.1.3. Definition. If X is a space and Aisaset andif g: X — A is a
surjective map then there exists exactly one topology 7 on A relative to which

¢ is a quotient map; it is called the quotient topology induced by g¢.

1.1.4. Definition. Let X be a topological space, and let X* be a partition
of X into disjoint subsets whose union is X. Let ¢ : X — X* be the surjective
map that carries each point of X to the element of X* containing it. In the

quotient topology induced by g, the space X™* is called a quolient space of X.

1.1.5. Definition. Let X be a locally compact Hausdorff space. Take
some object out side X, denoted by the symbol oo for convenience, and adjoin

it to X, forming the set ¥ = X' U{oco}. Topologize ¥ by defining the collection




of open sets in Y to be all sets of the following types:
(1) U, where U is an open subset of X,
(2) Y — C, where C is a compact subset of X.
The space Y is called the one — point compactification of X.

1.1.6. Theorem. Let X be a locally compact Hausdorff space which
is not compact; let Y be the one-point compactification of X. Then Y is a
compact Hausdorff space; X is a subspace of Y; the set ¥ — X consists of a

single point; and X =Y.
Proof: See (18, Chap. 3, 8.1].

1.1.7. Theorem. Let g: X —- Z be a surjective continuous map. Let

X* be the following collection of subsets of X:
X*={g(2) : z€ Z}.

Give X* the quotient topology.

(a) If Z is Hausdorff, so is X*.

(b) The map g induces a bijective continuous map f: X* — Z, which is
a homeomorphism if and only if g is a quotient map.

X<

X / Z

(p is a projection map.)

Proof: See [18, Chap. 2, 11.2].

1.1.8. Theorem. (Stone-Cech compactification). If X is completely
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regular, then there is a compact space SX such that:

(a) there is continuous map A : X — BX with the property that A :
X — A(X) is a homeomorphism;

(b) A(X) is dense in 8X;

(¢) if f € Cy(X), where Cy(X) is the space of all bounded continuous real

functions, then there is a continuous map f%: X — F such that fPoA = T.

Moreover, if {2 is a compact space having these properties, then € is home-

omorphic to SX.
Proof: See [6, Chap. 5, 6.2].

1.1.9. Definition. The compact set 5.X obtained in the preceding theo-
rem is called the Stone-C'ech compactification of X. By properties (a) and (b),
X can be considered as a dense subset of X and the map A can be taken to
be the inclusion map. With this convention, (c) can be interpreted as saying

that every bounded continuous function on X has a continuous extension to

BX.

1.1.10. Theorem. Let X be compact Hausdorff; let x € X. The inter-

section of all those sets A containing x which are both open and closed in X

equals the component of X containing z.
Proof: See [18, p.235].

1.1.11. Theorem. (Extension property.) Let X be a completely regular
Hausdorff space. If Y is a compact Hausdorfl space and g : X — Y is a

continuous mapping, then g extends uniquely to a continuous mapping from




the Stone-Clech compactification SX to Y.

Proof: See [2, 2.73).

1.1.12. Definition. Let X be a topological space. Then X is called

extremely disconnected if the closure of each open set is open (as well as closed).

At the end of this section we bring some theorems of measure theory which

are needed throughout this dissertation.

1.1.13. Theorem. Let yu be a regular Borel measure on a Hausdorff
locally compact topological space X. Then there exists a unique closed subset

Iy of X with the following two properties:

(1) u(E°) = 0; and

(2) if V is an open set such that ENV # 0, then u(ENV) > 0.

Proof: See [4, p.210].

1.1.14. Definition. The unique set F determined by Theorem 1.1.13 is

called the support of 1 and is denoted by supp .

1.1.15. Theorem. Let u be a signed measure on 3. Then for every F € &

the following formulas holds:

(1) p*(B) =sup{u(F) : FeTL and F C E}.

(2) p~(E) = sup{—u(F) : Feand F C E}.

(3) |u|(E) = sup{T|u(F)| : {F} is a finite disjoint collection of ¥ with
UF, C E}.

(4) |u(A)] < |ul(A) for each A € X,

(B) p=p*—p.




(6) |p| = p* +p~.

(7) 1= = (—)*.

Proof: See [4, p.229 and p.230].

1.2. DESCRIPTION AND ELEMENTARY
PROPERTIES OF VECTOR LATTICES

1.2.1. Definition. A relation > on a non-emply set £ is called an

order relation if it satisfies these properties:

(1) f > [ for all f € E (reflexivity).
(2)If f>gandg> fthen f=g (antisymmetry).
(3)If f>gand g > h, then f > h (transitivity).

The symbolism f < g is alternative notation for g> /.

1.2.2.  Definition. An ordered vector space is a real vector space [y

equipped with an order relation satisfying the following two conditions:

(4)If f > g,then f+h>g+hforall h e E.

(6) If f > g, then aof > ag for all o > 0.

An element f of ordered vector space E is called positive if [ > 0 holds.

The set of all positive elements of F is called positive cone of & and denoted

by E* (or E,).

1.2.3. Definition. A vector lattice (or Riesz space or linear lattice) E
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is an ordered vector space with the additional property that for cvery two
elements f,g € I the supremum j V g and the infimum f A g exist in £. We
remind the reader that two elements f,g € E have a supremum A in Eilh > f
and i > g hold and whenever k is an upper bound of {/, g}, then & > & holds.
Clearly h = fV g is uniquely determined. In other words, fV g is the smallest
upper bound of the set {f, g}. The definition of f A g is similar.

If we index A = {f; : ¢ € I}, then we may employ the standard lattice
notation

sup A=\/f; and inf A= A f; [2. p.210).
i€l iel
The geometric interpretation of the lattice structure on a vector lattice is

shown in Figure 1.1:

Vg
J
g
fAg
Figure 1.1. The geometry of sup and inf.
A norm |[.|[ on a vector lattice £ is said to be a lattice norm (or that ||.||

is compatible with the lattice structure of ), whenever |f| < |g| in £ implics
that {|f{] < |lgl| (where |f] = f Vv (=/)).
In this thesis a normed vector lattice is a vector lattice Lhat equipped with

a lattice norm.




