چکیدہ

حالتهای همدوس نوسانگر هماهنگ به صورت ویژه حالت عملگر نابودی جبر ویل-هایزنبرگ تعریف می شوند. یکی از ویژگیهای مهم حالتهای مزبور که به جهت کاربردهای فیزیکی آنها را از ساير حالتهای کوانتومی متمايز کرده است، توزيع شمارش کوانتومهای برانگيختگی فوتونها است که این امر از آمار پواسونی پیروی میکند. به طور مثال، در تجربه مشخص شده که توزیع آماری شمارش فوتونهای نور لیزر نیز از آمار پواسونی تبعیت می کند که این خود همان ویژگیهای همدوس استاندارد است.حالتهای همدوس غیرخطی از تعمیم جبر ويل-هايزنبرگ بهدست ميآيند، ولي منشأ فيزيكي آنها همچنان در دست بررسي است. با بررسی حرکت یک نوسانگر دوبعدی روی سطح کره، نشان داده شده است که تابع تغییر شکل f(n) در نظریه که حالتهای همدوس غیرخطی می تواند به ساختار هندسی فضای فیزیکی نیز مربوط باشد. از طرف دیگر در این مطالعات، سامانه در دمای صفر بررسی شده است. اما در دماهای بالاتر، به نظر میرسد که یکسری از خصوصیات غیرکلاسیکی حالتهای مزبور تغییر یابند. بدین منظور در این پایان نامه اهداف زیر دنبال میشوند: الف) بررسی نوسانگر هماهنگ روی سطوح تخت و کروی در دماهای غیر صفر و ساختن حالتهای همدوس گرمایی غیرخطی متناظّر با آنهاً. ب) بررسی ویژگیهای آمار کوانتومی حالتهای همدوس گرمایی بهدست آمده. با مطالعهی خواص آمار کوانتومی این حالتها مشاهده شد که افزایش ویژگیهای غیر کلاسیک حالتهای همدوس گرمایی روی سطح کره (نظیر چلاندگی در مؤلفههآی کوادراتوری) را میتوان به خمیدگی فضّای فیزیکی و کاهش دما نسبت داد.

فهرست مطالب

١	نهای همدوس در فضای تخت و روی سطح کره	حالد	۱
١	حالتهای همدوس استاندارد	۱.۱	
٢	ویژگیهای حالتُهای همدوس استاندارد	۲.۱	
٣	تعمیم حالتهای همدوس	۳.۱	
۴	حالتهای همدوس با بعد متناهی	۴.۱	
۴	۱.۴.۱ فضای هیلیرت با بعد متناهی		
۵	۲.۴.۱ حالتهای همدوس با بعد متناهی		
	حالتهای همدوس غیر خطّی نوسانگر هماهنگ روی سطح تخت و روی	۵.۱	
6	سطح کرہ		
۶	۱.۵.۱ کُنوسانگر هماهنگ روی فضای تخت		
٨	۲.۵.۱ جُبر نوسانگر هماهنگ روی یک کره ۲.۰۰۰ جبر نوسانگر هماهنگ روی یک کره		
11	۳.۵.۱ حالتهای همدوس در فضای هیلبرت با بعد متناهی		
١٢	۴.۵.۱ رابطهی تفکیک واحد ۴.۵.۱		
14	ساختار هندسی حالتهای همدوس غیرخطی	۶.۱	
	۱.۶.۱ کی ساختار هندسی حالتهای همدوس غیر خطی روی سطح تخت		
۱۵	و روی سطح کرہ		
	و بژگرهای آمار کوانتومی جالتهای همدوس غیر خطی وی فضای تخت	۷.)	
١٧			
١٧	ر روی از این از میانگین و آمار شمارش فوتون ها		
19	1.7.7		
۲.	۳.۷.۱ جلاندگ کواد اتوری		
۲۳	نھای ھمدوس گرمانی	حالد	۲
٢٣	تحول زمانی آنسامیا ها	١.٢	
۲۳	ا تول را یکی است. این در حالت تعادا		
78	نوسانگ هماهنگ در مکانیک کلاسیک	۲.۲	
78	المحالي		
78	۲.۲.۲ نوسانگر هماهنگ میرا		
۲۷	مجاسبه مقدار انتظاري بك عملكي بيبيب بيبيب بالالالا	۳.۲	
29	ما که ما مذکر میدود مذکر معام ما است کا ما	47	
٣.	حسار د. فضاء هاست کر قصای هیشترک کرمایی ۲۰۰۰ ۲۰۰۰	ΔΥ	
٣.	جبر کی کار کتھای کلینبرے کرتھایی ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	۵.۱ ۶۲	
۳١	كوساخكر بوروني غربة يتي المدرمة ،	/ •1	
٣٢	مداع هام کا مار	۷۲	
۳ ۳	حملکرهای کرهایی	٨.٢	
	جبر کی کرمایی	··· ·	

79 79 78 78 70 70 70 70 70 70	حالت همدوس گرمایی مفر ۲۰۰۰ مدر ۲۰۰۰ مال مدرس در دمای صفر ۲۰۰۰ مالت همدوس در دمای صفر ۲۰۰۰ مالت همدوس گرمایی در دمای $^{-1}\beta^{-1}$ در فضای هیلبرت \mathcal{H} ۲.۹.۲ حالت همدوس گرمایی در فضای مَد دار ۲۰۰۰ مالت همدوس گرمایی در حالت کلی ۲۰۰۰ مالت همدوس گرمایی در حالت کلی ۲۰۰۰ مالت همدوس گرمایی در مالت میدان ۲۰۰۰ مالت همدوس گرمایی در مالت کلی ۲۰۰۰ مالت همدوس روی سطح کره ۲۰۰۰ محاسبه در تابع توزیع Q برای حالت همدوس روی سطح کره ۲۰۰۰ ۲۰۰۰ محاسبه در تابع توزیع ویگنر برای حالت عددی گرمایی ۴.۱۰۰۲	۹.۲ ۱۰.۲	
	های همدوس گرمایی نوسانگر هماهنگ روی سطح تخت و روی سطح	حالت	٣
۵۱		کرہ	
۵١	حالتهای همدوس گرمایی غیرخطی	۱.۳	
۵۲	حالتهای همدوس گرمایی روی سطح تخت	۲.۳	
	۱.۲.۳ 👘 حالتهای همدوس گرمایی نوسانگر هماهنگ روی سطح تخت		
۵۲	در فضای هیلبرت <i>H</i>		
	۲.۲.۳ 👘 حالتهای همدوس گرمایی نوسانگر هماهنگ روی سطح تخت		
۵۲	\mathcal{H} در فضای هیلبرت $\mathcal{ ilde{H}}$		
	۳.۲.۳ حالتهای همدوس گرمایی نوسانگر هماهنگ روی سطح تخت		
۵۲	\mathcal{H}_T در فضای هیلبرت \mathcal{H}_T		
	حالتهای هُمدوس گرمایی غیرخطی نوسانگر هماهنگ روی کره در	۳.۳	
۵۳	فضای هیلبرت گرمایی		
۵۳	روابطَ تفكيكَ واحد	۴.۳	
۵۵	۱.۴.۳ متریک فوبینی-استادی در فضای هیلبرت گرمایی		
	ویژگیهای آمار کوانتومی حالتهای همدوس گرمایی غیرخطی روی	۵.۳	
۵٨	سطح تخت و روی سطح کره		
۵٨	۱.۵.۳ شمار میانگین و آمار شمارش فوتونها ۲۰۰۰ میانگین و آمار		
۵٩	۲.۵.۳ پارامتر مندل		
۶.	۳.۵.۳ چَلَاندَگَى كوادراتورى		
87	نتيجه گيري کلي	۶.۳	

فهرست شكلها

٨	دستگاه مختصات ژنومی	۱.۱
	نمودار تغییرات میاًنگین فوتونها برای حالتهای همدوس $ z angle_{f}$ بر حسب z و	۲.۱
١٨	(نقطه چین)، $N = 20$ (خط چین) و $N = 30$ (خط توپر) $N = 10$ (خط توپر)	
	نمودار تغییرات میانگین فوتونها برای حالتهای همدوس روی کره نسبت به λ	۳.۱
	N=30 و برای مقادیر مختلف $N=10$ (نقطه چین)، $N=20$ (خط چین) و $N=30$	
١٩	(خط توپر)	
	نمودار تغییرات پارامتر مندل بر حسب انحنای λ و برای $N=10$ (نقطه چین)،	۴.۱
١٩	$N=30$ (خط چين) و $N=30$ (خط توپر). $\dots \dots \dots$	
	نمودار تغییرات \hat{S}_{1a} بر حسب $arphi$ برای $N=10$ و برای $\lambda=0.0$ (خط توپر)،	۵.۱
21	(خط چين) و $\lambda=0.2$ (نقطه چين). $\lambda=0.1$ (خط چين) $\lambda=0.1$	
	نمودار تغییرات \hat{S}_{2a} بر حسب $arphi$ برای $N=10$ و برای $\lambda=0.0$ (خط توپر)،	۶.۱
21	(خط چين) و $\lambda=0.2$ (نقطه چين). $\lambda=0.1$ (خط چين) $\lambda=0.1$	
	نمودار تغییرات S_{1A} بر حسب $arphi$ برای $N=10$ به ازای $\lambda=0$ (خط توپر)،	۷.۱
22	(خط چين) و $\lambda = 0.5$ (نقطه چين)	
	نمودار تغییرات S_{2A} بر حسب $arphi$ برای $N=10$ به ازای $\lambda=0$ (خط توپر)،	٨.١
22	(خط چین) و $\lambda = 0.5$ (نقطه چین). $\lambda = 0.5$ (خط چین) $\lambda = 0.1$	
47	λt $(1 - 2)$ $ \alpha = 2$ $ \alpha = 2$	١٢
• •	$\bar{n}(\beta) = \bar{n}(\beta)$ $\bar{n}(\beta)$ $\bar{n}(\beta)$	77
49	$\frac{1}{2} \left(\frac{1}{2} \right) \left(1$	
.,	$\bar{n}(\beta) = \bar{n}(\beta)$ $\bar{n}(\beta)$ $\bar{n}(\beta)$	٣.٢
49	$\lambda t = 0, \eta = 0$	
	$\bar{n}(\beta) = \frac{1}{2}$ وارونی جمعیت اتم برای میدان در حالت عددی گرمایی $\langle (\beta) $ و فرض $\bar{n}(\beta)$	۴.۲
41	$ \begin{array}{c} \cdot \cdot$	
	$ar{n}(eta) = [1(eta))$ وارونی جمعیت اتم برای میدان در حالت عددی گرمایی $\langle 1(eta) $ و فرض	۵.۲
41	$\cdot \cdot $	
	وارونی جمعیت اتم برای میدان در حالتهای عددی گرمایی $\langle(eta) angle$ و فرض	۶.۲
41	λt بر حسب $\bar{n}(eta)=0.1$	
	$ar{n}(eta)=ar{n}(eta)$ وارونی جمعیت اتم برای میدان در حالت عددی گرمایی $\langle 5(eta) angle$ و فرض	۷.۲
۴٨		
	$ar{n}(eta)=$ وارونی جمعیت اتم برای میدان در حالت عددی گرمایی $\langle 5(eta) angle$ و فرض	٨.٢
۴۸	$\cdot \cdot $	•
د ۱	وارونی جمعیت اتم برای میدان در حالتهای عددی گرمایی $\langle (eta) $ و فرض	٩.٢
۲۸	$$ بر حسب $\bar{n}(\beta) = 5$	<u>ر</u> ب
v C 0	$n(eta)=0.1$ تابع توزیع Q برای میدان در حالت عددی کرمایی $\langle (eta) angle $ و فرض Q	۱۰.۲
11	بر حسب x و x بر حسب x بر	

فهرست شكلها

مقدمه

سامانههای کوانتومی در دماهای غیر صفر و حالتهای پایهی آن که حالتهای گرمایی نامیده میشوند، در مکانیک آماری بر اساس روشهای مختلفی بررسی می گردد که در این جا به دو روش آن اشاره می کنیم. روش ۱: در گام نخست، ماتریس چگالی سامانه را محاسبه و سپس معادلهی لیوویل-فون نویمان را حل می کنند. روش ۲: ابتدا سامانه در دمای صفر بررسی و سپس در حالت گرمایی با فرض این که سامانه در آنسامبل کانونی و در حالت تعادل باشد، بیان می شود. این رهیافت برای بعضی از حالتهای کوانتومی همچون حالتهای عددی، همدوس و چلانده بررسی شده است.

در این پایان نامه که شامل سه فصل است، در فصل (۱) به نظریهی حالتهای همدوس می پردازیم و ابتدا با نگرش مروری بر این حالتها، با برخی از مفاهیم اولیهی آن آشنا خواهیم شد. در ادامه، ضمن معرفی تعمیم حالتهای همدوس، حالتهای همدوس غیرخطی را معرفی می کنیم. همچنین حالتهای همدوس در فضای با بعد متناهی را معرفی خواهیم کرد. بر فصل (۲)، نحوهی تأثیر دما را بر یک سامانهی در حالت تعادل گرمایی و در آنسامبل کانونی بررسی و سپس حالت خلأ گرمایی را مطرح کرده و از روی آن، حالتهای عددی گرمایی و همدوس گرمایی و ... را بهدست میآوریم. در آخر این فصل نیز با توجه به مدل جینز کامینگز، چگالی و وارونی جمعیت اتم که در آن میدان در این حالتهای گرمایی باشد، بررسی شده و توابع توزیع کوانتومی مربوط به حالتهای عددی گرمایی را محاسبه خواهیم کرد. به بررسی و یژگیهای آمار کوانتومی حالتهای عددی گرمایی را محاسبه خواهیم کرد. نوابع توزیع کوانتومی مربوط به حالتهای عددی گرمایی را محاسبه خواهیم کرد. به بررسی ویژگیهای آمار کوانتومی حالتهای همدوس مزبور خواهیم پرداخت. در ادامهی این فصل خواص آمار کوانتومی نظیر شمار میانگین و آمار شمارش فوتونها، پارامتر مندل و چلاندگی کوادراتوری را برای حالتهای همدوس گرمایی و می معرفی کرده و سپس در فصل زی کامیت در این میدان در این حالتهای گرمایی باشد، بررسی شده و می در فصل (۲) مالتهای همدوس گرمایی روی سطح تخت و مطح کره را معرفی کرده و سپس در فصل خواص آمار کوانتومی حالتهای همدوس مزبور خواهیم پرداخت. در ادامه ی چلاندگی کوادراتوری را برای حالتهای همدوس گرمایی روی سطح تخت و سطح کره بارمتر مندل و

۱.۱ حالتهای همدوس استاندارد

ساختار نوسانگر هماهنگ در فضای تخت از جمله مباحث عمده در بسیاری از حوزههای فیزیک مدرن به ویژه مکانیک کوانتومی به شمار می آید [۱]. در سال ۱۹۶۳ گلاوبر [۲، ۳]، \hat{a}^{\dagger} سودارشان [۴] و کلاودر [۵]، ارتباط حالتهای همدوس را با عملگرهای آفرینش و نابودی \hat{a} و \hat{a} مشخص کردند. کنش این عملگرها روی فضای فوک،

$$\{|n\rangle, \langle m|n\rangle = \delta_{m,n}; m, n \in N\}_{n=0}^{\infty} ; \qquad (1.1)$$

به صورت زیر است،

$$\begin{split} \hat{a}|n\rangle &= \sqrt{n}|n-1\rangle, \\ \hat{a}^{\dagger}|n\rangle &= \sqrt{n+1}|n+1\rangle, \\ \hat{n}|n\rangle &= \hat{a}^{\dagger}\hat{a}|n\rangle = n|n\rangle, \end{split} \tag{7.1}$$

که در آن $\hat{n}=\hat{a}^{\dagger}\hat{a}$ عملگر عددی است. این عملگرها از جبر ویل-هایزنبرگ تبعییت میکنند، $\hat{n}=\hat{a}^{\dagger}\hat{a}$

$$[\hat{a}, \hat{a}^{\dagger}] = \hat{I},$$
$$[\hat{a}, \hat{n}] = \hat{a},$$

$$[\hat{a}^{\dagger}, \hat{n}] = -\hat{a}^{\dagger}.$$
 (٣.1)

پس از اختراع نخستین لیزر در دههی ششم قرن بیستم، آزمایشها نشان دادند که توزیع آماری شمارش فوتونهای نور لیزر از نوع پواسونی است. از طرف دیگر، گلاوبر با استفاده از نحوهی کنش عملگر نابودی â، موفق به یافتن ویژه حالت آن به صورت زیر گردید [۲، ۳]،

$$\begin{aligned} \hat{a}|z\rangle &= z|z\rangle, \\ |z\rangle &= \exp\left(-\frac{|z|^2}{2}\right) \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |n\rangle, \\ \langle z|z\rangle &= 1. \end{aligned}$$
(F.1)

با بررسی آمار این حالتها مشاهده شد که،
$$P(n) = |\langle n|z \rangle|^2 = \exp(-|z|^2) \frac{|z|^{2n}}{n!},$$
 (۵.۱)

به این معنی که حالتهای $\langle z \rangle$ نیز از آمار پواسونی (همان توزیع فوتونی نور لیزر) پیروی می کنند. بدینسان چشمههای نور لیزر به عنوان اولین منابع در دسترس حالتهای همدوس استاندارد تابش الکترومغناطیسی معرفی گردیدند. حالتهای همدوس (۴.۱) متناظر با جبر ویل-هایزنبرگ با عناصر $\{\hat{a}, \hat{a}^{\dagger}, \hat{a}, \hat{a}\}$ هستند، به طوری که مولدهای جبر مزبور رابطههای ویل-هایزنبرگ با عناصر $\{0, 0, 0, 0, 0\}$ هستند، به طوری که مولدهای جبر مزبور رابطههای جابجایی (۳.۱) را برآورده می کنند. از اینرو، حالتهای به دست آمده در (۴.۱) حالتهای همدوس کنونیک (ستان را با جبر مزبور رابطههای به مولدهای جبر مزبور رابطههای معدوس کانونیک (ستاندارد) را برآورده می کنند. از اینرو، حالتهای به دست آمده در (۴.۱) حالتهای همدوس کانونیک (استاندارد) نام گذاری شدهاند. از طرف دیگر حالتهای همدوس را با کنش نمایش یکانی و کاهشناپذیر گروه ویل-هایزنبرگ روی حالت خلأ میدان نیز میتوان به دست آورد،

$$\hat{D}(z, z^*) |0\rangle = |z\rangle, \qquad (\textbf{F.1})$$

که در آن
$$\hat{D}(z, z^*)$$
 به صورت زیر است،
 $\hat{D}(z, z^*) = \exp(z \hat{a}^{\dagger} - z^* \hat{a}).$ (۷.۱)

۲.۱ ویژگیهای حالتهای همدوس استاندارد

، ستاندارد به صورت زیر است، استاندارد به صورت زیر است،
$$\frac{1}{\pi} \int_C d^2 z |z\rangle \langle z| = \hat{C}, \qquad d^2 z = |z|d|z|d\theta,$$
 (٨.١)

۳.۱ تعمیم حالتهای همدوس

$$\begin{split} \hat{A} &= \hat{a} f(\hat{n}) = f(\hat{n} + 1) \hat{a} \\ \hat{A}^{\dagger} &= f^{\dagger}(\hat{n}) \hat{a}^{\dagger} = \hat{a}^{\dagger} f^{\dagger}(n + 1), \end{split} \tag{11.1}$$

و در نتیجه، ساختارهای جبر غیرخطی زیر بهدست میآید،

$$\begin{split} & [\hat{A}, \hat{A}^{\dagger}] = (\hat{n} + 1)f(\hat{n} + 1)f^{\dagger}(\hat{n} + 1) - \hat{n}f(\hat{n})f^{\dagger}(\hat{n}), \\ & [\hat{A}, \hat{n}] = \hat{A}, \\ & [\hat{A}^{\dagger}, \hat{n}] = -\hat{A}^{\dagger}. \end{split} \tag{17.1}$$

در این صورتبندی شکل عملگر هامیلتونی با پادجابجاگر زیر تعیین میگردد [۱۲]. $\hat{H} = \frac{1}{2} [\hat{A}, \hat{A}^{\dagger}] = \frac{1}{2} [(\hat{n}+1)f(\hat{n}+1)f^{\dagger}(\hat{n}+1) + \hat{n}f(\hat{n})f^{\dagger}(\hat{n})].$ (۱۳.۱)

به منظور تعیین ساختار ریاضی حالتهای همدوس غیرخطی، شیوهی متداول آن است که $|z, f\rangle$ این حالتها به عنوان ویژه حالتهای عملگر \hat{A} در نظر گرفته شوند. فرض می کنیم $|z, f\rangle$ ویژه حالت \hat{A} در یک فضای هیلبرت باشد، به طوری که داشته باشیم، $\hat{A}|z, f\rangle = z|z, f\rangle.$ (۱۴.۱)

در این صورت نمایش حالتهای مزبور در پایهی حالتهای عددی به شکل زیر است
$$|z, f\rangle = N_f(|z|^2)^{-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}[f(n)]!} |n\rangle, \qquad z \in C.$$
 (۱۵.۱)

که در آن، $N_f(|z|^2)$ ضریب بهنجارش است و به کمک شرط $1=\langle z,f|z,f
angle =1$ به صورت زیر تعیین میشود،

$$N_f = \sum_{n=0}^{\infty} \frac{|z|^{2n}}{n!([f(n)]!)^2}.$$
(19.1)

در اینجا، بنا به تعریف چنین داریم $[f(n)]! = f(0)f(1)...f(n), \qquad [f(0)]! = 1.$ (۱۷.۱)

واضح است که حالت خاص |z,1
angle همان حالتهای همدوس استاندارد است [معادلهی (۴.۱)].

۴.۱ حالتهای همدوس با بعد متناهی

در این بخش نخست فضای هیلبرت با بعد متناهی را معرفی می کنیم و سپس نحوهی تعریف حالتهای همدوس را در این فضای هیلبرت بررسی خواهیم کرد.

۱.۴.۱ فضای هیلبرت با بعد متناهی

فضای هیلبرت با بعد متناهی (N+1)، (N+1) حالت عددی زیر، افضای $(N, 1), ..., |N\rangle$, با $|0\rangle, |1\rangle, ..., |N\rangle$, (۱۸.۱)

پوشیده می شود. حالتهای عددی بالا یک مجموعه کامل و متعامد هستند، بدین مفهوم که،

$$\sum_{n=0}^{N} |n\rangle \langle n| = \hat{I}_{N},$$

$$\langle n|m\rangle = \delta_{n,m},$$
(19.1)

که در آن، \hat{I}_N عملگر یکانی در فضای هیلبرت $\mathcal{H}^{(N+1)}$ است. بنابراین میتوانیم یک حالت عددی عددی دلخواه مانند $|\psi\rangle_N$ را در این فضای هیلبرت با بعد متناهی برحسب حالتهای عددی بالا بسط دهیم،

$$|\psi\rangle_N = \sum_{n=0}^N C_n^N |n\rangle.$$
 (Y.1)

عملگرهای آفرینش و نابودی نیز در این فضای با بعد متناهی چنین تعریف میشوند،

$$\hat{a}_{N} = \sum_{n=0}^{N} \sqrt{n} |n-1\rangle \langle n|,$$

$$\hat{a}_{N}^{\dagger} = \sum_{n=0}^{N} \sqrt{n} |n\rangle \langle n-1|.$$
(11.1)

بنابراین رابطهی جابجاگری میان عملگرهای آفرینش و نابودی به سادگی بهدست میآید، $[\hat{a}_N, \hat{a^{\dagger}}_N] = \hat{I}_N - (N+1)|N\rangle\langle N|.$ (۲۲.۱)

نکتهی مهم این رابطهی جابجاگری این است که با توجه به آن داریم.
$$[\hat{a}_N, [\hat{a}_N, \hat{a^{\dagger}}_N] \neq 0.$$
 (۲۳.۱)

بنابراین در محاسبات مربوط به عملگرهای آفرینش و نابودی در فضای هیلبرت با بعد متناهی، استفاده از رابطهی B.C.H ^۲ میسر نیست و از اینرو بررسیهای تحلیلی در فضای هیلبرت مزبور با پیچیدگی بیشتری همراه خواهد بود.

۲.۴.۱ حالتهای همدوس با بعد متناهی

با توجه به محدود بودن حالتهای عددی در فضای هیلبرت با بعد متناهی، حالتهای همدوس با بعد متناهی را میتوانیم از قطع کردن حالتهای همدوس استاندارد در فضای هیلبرت با بعد متناهی بهدست آوریم [۱۳]. در روش همارز دیگر، حالتهای همدوس با بعد متناهی را میتوان از کنش عملگر ($(\hat{z}\hat{a}^{\dagger})$. در روش همارز دیگر، حالتهای همدوس با بعد متناهی را میتوان از کنش عملگر ($(\hat{z}\hat{a}^{\dagger})$ ، بر حالت خلأ (0) بدست آورد، یعنی میتوان از کنش عملگر ($(\hat{z}\hat{a}^{\dagger})$ ، بر حالت خلأ ($|z\rangle_N = N_N \exp(z\hat{a}^{\dagger})$) بدست آورد، یعنی که در آن N_N ضریب بهنجارش است.

 $Baker - Campbell - Hausdorff^{\intercal}$

۵.۱ حالتهای همدوس غیرخطی نوسانگر هماهنگ روی سطح تخت و روی سطح کره

در این بخش یک نوسانگر هماهنگ دو بعدی را روی سطح تخت و روی سطح کره، در نظر می گیریم. سپس با بررسی جبر این نوسانگر، نشان می دهیم که می توانیم آن ها را به عنوان جبر نوسانگر یک بعدی تغییر شکل یافته تعبیر کنیم. به علاوه نشان می دهیم که جبر نوسانگر روی سطح کره را نیز می توان به عنوان تغییر شکل یافته ی جبر نوسانگر روی سطح تخت در نظر گرفت.

۱.۵.۱ نوسانگر هماهنگ روی فضای تخت

نوسانگر هماهنگ دو بعدی و متقارن در مختصات اقلیدسی با هامیلتونی زیر توصیف میشود، $\hat{H} = rac{1}{2}(\hat{p}_x^2 + \hat{p}_y^2) + rac{1}{2}(\hat{x}^2 + \hat{y}^2),$ (۲۵.۱)

در آن، \hat{x} و \hat{y} عملگرهای اندازه حرکت هستند. (در اینجا فرض \hat{p}_x و \hat{p}_y ملگرهای اندازه حرکت هستند. (در اینجا فرض کردهایم $1 = \omega = m = 1$). با در نظر گرفتن عملگرهای فرادکین π که به صورت زیر تعریف می شوند [۱۸]

$$\hat{B} = \hat{S}_{xx} - \hat{S}_{yy} = (\hat{p}_x^2 + \hat{x}^2) - (\hat{p}_y^2 + \hat{y}^2),$$

$$\hat{S}_{xy} = \hat{p}_x \hat{p}_y + \hat{x} \hat{y}.$$
 (YF.1)

و همچنین با تعریف عملگر اندازه حرکت زاویه ای به صورت،
$$\hat{L}\equiv\hat{L}_{z}=\hat{x}\hat{p_{y}}-\hat{y}\hat{p_{x}}.$$
 (۲۷.۱)

و با استفاده از رابطهی (۲۵.۱)، میتوان نشان داد که عملگرهای \hat{B} و \hat{L} ثابت حرکت بوده، اما با یکدیگر جابجا نمیشوند و همراه با عملگر \hat{S}_{xy} یک جبر بسته تشکیل میدهند،

$$\begin{split} & [\hat{L}, \hat{B}] = 4i \hat{S}_{xy}, \\ & [\hat{L}, \hat{S}_{xy}] = -i \hat{B}, , \\ & [\hat{B}, \hat{S}_{xy}] = 4i \hat{L}. \end{split} \tag{7A.1}$$

 $Fradkin^{r}$

حال عملگرهای زیر را تعریف میکنیم،

$$\begin{split} \hat{n} &= \frac{L}{2} - u\hat{I}, \\ \hat{A}^{\dagger} &= \frac{1}{2} \left(\frac{\hat{B}}{2} + i\hat{S}_{xy} \right), \\ \hat{A} &= \frac{1}{2} \left(\frac{\hat{B}}{2} - i\hat{S}_{xy} \right), \end{split} \tag{19.1}$$

که در آن u ثابت حرکت است که باید تعیین گردد. اکنون با توجه به روابط جابجایی فوق در مییابیم که،

$$[\hat{A}, \hat{A}^{\dagger}] = \phi(\hat{H}, \hat{n} + 1) - \phi(\hat{H}, \hat{n}).$$
 ($\Upsilon \cdot .1$)

در اینجا، تابع ساختار،
$$\phi(\hat{E},n) = \frac{1}{4} [E^2 - (2n + 2u - 1)^2], \tag{٣١.1}$$

یک تابع حقیقی و مثبت معین برای
$$0>n>$$
 است و در ضمن داریم، $\phi(\hat{E},0)=0.$

حال می توانیم فضای فوک را برای هر ویژه مقدار انرژی تعریف کنیم،

$$\begin{split} \hat{H}|E,n\rangle &= E|E,n\rangle, \\ \hat{n}|E,n\rangle &= n|E,n\rangle, \quad n = 0, 1, 2, ..., \\ \hat{A}|E,0\rangle &= 0, \\ |E,n\rangle &= \frac{1}{\sqrt{[\phi(E,n)]!}} (\hat{A}^{\dagger})^n |E,0\rangle, \end{split}$$
(TT.1)

به طوری که داریم، $[\phi(E,n)]! = \phi(E,n)\phi(E,n-1)\dots\phi(E,1), \quad [\phi(E,0)]! = 1.$ (۳۴.۱)

با توجه به رابطهی (۳۳.۱)، دامنهی فضای فوک متناظر با ویژهمقدار انرژی، به دلیل تبهگنی N+1 است. به عبارت دیگر،

$$\phi(E, N+1) = 0. \tag{Ta.1}$$

اگر ویژهمقدار انرژی را با
$$E_N$$
 نشان دهیم و با استفاده از روابط (۳۲.۱)، (۳۵.۱) و شرط مثبت
معین بودن تابع ساختار میتوان u و E_N را برای سطح تخت بهدست آورد،
 $(E_N)_{flat} \equiv (E_N)_f = N + 1, \quad u = \frac{-N}{2}.$ (۳۶.۱)

،بنابراین تابع ساختار نوسانگر هماهنگ روی سطح تخت به صورت زیر است، $\phi_f(E_N, n) = n(N + 1 - n).$ (۳۷.۱)

با مقایسه یدو معادله ی (۱۲.۱) و (۳۰.۱) می توانیم چنین بنویسیم،
$$nf^2(n) = \phi(E_N, n).$$
 (۳۸.۱)

بنابراین از جبر نوسانگر هماهنگ دوبعدی به جبر نوسانگر هماهنگ یک بعدی تغییر شکل
یافته دست پیدا میکنیم. پس با توجه به تابع ساختار
$$\phi_f(E_N, n)$$
 داریم،
 $f_f(n) = \sqrt{N+1-n}.$ (۳۹.۱)

۲.۵.۱ جبر نوسانگر هماهنگ روی یک کره

در این بخش از دستگاه مختصات ژنومی بر روی کره، که تعمیمی از دستگاه مختصات دکارتی هندسه ی اقلیدسی است، استفاده می کنیم [۱۹]. این مختصات، مطابق شکل (۵۲.۱) مختصات دکارتی دکارتی بر روی صفحه ی مماس بر کره است. بدین صورت که برای یافتن مختصات هر نقطه ی کره، از مرکز کره به نقطه مورد نظر شعاعی وصل کرده و امتداد می دهیم تا صفحه ی مماسی را قطع کند. مختصات دکارتی نقطه ی تقاطع در صفحه ی مماسی را به عنوان مختصات نقطه ی مورد نظر می گیریم. اگر (p_1, q_2, q_0) مختصات دکارتی بر روی کره در نظر می کنیم وصل کرده و امتداد می دهیم تا صفحه ی مماسی را مورد نظر شعاعی وصل کرده و امتداد می دهیم تا صفحه ی مماسی را مورد نظر شعاعی وصل کرده و امتداد می دهیم تا صفحه ی مماسی را قطع کند. مختصات دکارتی نقطه ی تقاطع در صفحه ی مماسی را به عنوان مختصات نقطه ی مورد نظر می گیریم. اگر (p_1, q_2, q_0) مختصات دکارتی نقطه ی تقاطع در صفحه ی مماسی را به عنوان مختصات نقطه ی مورد نظر بر روی کره در نظر می گیریم. اگر (p_1, q_2, q_0)، مختصات دکارتی نقطه ی ت

شکل ۱.۱: دستگاه مختصات ژنومی

کرہای به شعاع
$$R$$
 باشد، داریم
$$q_1^2 + q_2^2 + q_0^2 = R^2 = \frac{1}{\lambda}, \tag{f.1}$$

که در آن $\lambda = \frac{1}{R^2}$ خمیدگی کره است. حال اگر مختصات دکارتی روی صفحهی مماسی را نیز با x و y نشان دهیم، ارتباط بین این دو مجموعهی مختصات، با استفاده از هندسهی آنها، به شکل زیر بهدست میآید،

$$q_{1} = \frac{x}{\sqrt{1 + \lambda(x^{2} + y^{2})}},$$

$$q_{2} = \frac{y}{\sqrt{1 + \lambda(x^{2} + y^{2})}},$$

$$q_{0} = \frac{1}{\sqrt{1 + \lambda(x^{2} + y^{2})}}.$$
(F1.1)

- به عبارت دیگر داریم، $\vec{r} = (\frac{x}{A}, \frac{y}{A}, \frac{1}{\sqrt{\lambda}A}), \tag{FT.1}$
- که در آن $A = \sqrt{1 + \lambda (x^2 + y^2)}, \tag{47.1}$

است. حال با دیفرانسیل گیری از
$$\vec{r}$$
 چنین بهدست می آوریم،
 $d\vec{r} = \vec{r}_x dx + \vec{r}_y dy,$ (۴۴.۱)

که در آن،

$$\vec{r}_{x} = \frac{\partial \vec{r}}{\partial x} = \left(\frac{1+\lambda y^{2}}{A^{3}}, \frac{-\lambda xy}{A^{3}}, \frac{-\sqrt{\lambda}x}{A^{3}}\right),$$

$$\vec{r}_{y} = \frac{\partial \vec{r}}{\partial y} = \left(\frac{-\lambda xy}{A^{3}}, \frac{1+\lambda x^{2}}{A^{3}}, \frac{-\sqrt{\lambda}y}{A^{3}}\right).$$
 (F۵.1)

بنابراین، با استفاده از معادلهی (۴۴.۱)، متریک کره بر حسب مختصات x و y به شکل زیر بهدست میآید، بهدست میآید، $ds^{2} = d\vec{r}.d\vec{r} = (\vec{r}_{x}.\vec{r}_{x})dx^{2} + (\vec{r}_{y}.\vec{r}_{y})dy^{2} + 2(\vec{r}_{x}.\vec{r}_{y})dxdy.$ (۴۶.۱)

بدینسان، متریک مزبور را با استفاده از معادلهی (۴۵.۱)، به صورت زیر محاسبه میکنیم

$$ds^{2} = \left(\frac{1+\lambda y^{2}}{A^{4}}\right) dx^{2} + \left(\frac{1+\lambda x^{2}}{A^{4}}\right) dy^{2} - 2\frac{\lambda xy}{A^{4}} dx dy$$
$$= \frac{dx^{2} + dy^{2} + \lambda(x dy - y dx)^{2}}{A^{4}}.$$
 (FY.1)

از اینرو، متریک کره بر حسب مختصات x و y، با استفاده از تعریف A، به شکل زیر بهدست می آید،

$$ds^{2} = \frac{dx^{2} + dy^{2} + \lambda(xdy - ydx)^{2}}{[1 + \lambda(x^{2} + y^{2})]^{2}}.$$
 (FA.1)

دیده می شود که در حد فضای تخت $0 \to \lambda$ ، متریک (۴۸.۱) به متریک بر روی صفحه تخت تبدیل می شود،

$$ds^2 = dx^2 + dy^2. \tag{(f9.1)}$$

حال اگر $\frac{dS}{dt}$ را محاسبه و از روی آن لاگرانژی را بهدست آوریم، آنگاه هامیلتونی نوسانگر هماهنگ بر روی سطح کره در این مختصات، به صورت زیر است [۱۴]، $\hat{H} = \frac{1}{2}(\hat{\pi}^2 + \lambda \hat{L}^2) + \frac{1}{2}(\hat{x}^2 + \hat{y}^2),$ (۵۰.۱)

که در آن چنین داریم،
$$\hat{\pi} = \hat{p} + \frac{\lambda}{2} [\vec{x}(\vec{x}.\vec{p}) + (\vec{p}.\vec{x})\vec{x}],$$
 (۵۱.۱)

و

$$\hat{L}^{2} = \frac{1}{2} \hat{L}_{ij} \hat{L}_{ij}, \quad \hat{L}_{ij} = \hat{x}_{i} \hat{p}_{j} - \hat{x}_{j} \hat{p}_{i}.$$
 (۵۲.1)

$$\begin{split} \hat{B} &= \hat{S}_{xx} - \hat{S}_{yy} = (\hat{\pi}_x^2 + \hat{x}^2) - (\hat{\pi}_y^2 + \hat{y}^2), \\ \hat{S}_{xy} &= \frac{1}{2} \left\{ \hat{\pi}_x, \hat{\pi}_y \right\} + \hat{x}\hat{y}, \end{split} \tag{\DeltaT.1}$$

و در نهایت همانند روش فضای تخت، تابع ساختار زیر را بهدست می آوریم،
$$\phi(E,n) = E^2 - (\omega^2 + \frac{\lambda^2}{4} + \lambda E)(2n + 2u - 1)^2 + \frac{\lambda^2}{4}(2n + 2u - 1)^4.$$
 (۵۴.۱)

همانند قبل، فضای فوک متناظر با نوسانگر هماهنگ روی کره را بنا میکنیم. با فرض وجود یک نمایش با بعد متناهی برای این جبر، معادلات (۳۲.۱) و (۳۵.۱) همچنان برقرار خواهند بود. بنابراین ویژه مقادیر انرژی به صورت زیر است

$$(E_N)_{sphere} \equiv (E_N)_s = \sqrt{1 + \frac{\lambda^2}{4}}(N+1) + \frac{\lambda}{2}(N+1)^2, \qquad u = \frac{N}{2}.$$
 (۵۵.1)

و سرانجام تابع ساختار زیر برای نوسانگر هماهنگ روی کره بدست میآید،

$$\phi_s(E,n) = n(N+1-n) \left[\lambda(N+1-n) + \sqrt{1+\frac{\lambda^2}{4}} \right] (\lambda n + \frac{\lambda^2}{4}). \quad (\Delta 9.1)$$

به سادگی دیده میشود که در حد $0 \to \lambda$ ویژه مقادیر انرژی (۵۶.۱) و تابع ساختار (۵۵.۱) به ویژه مقادیر انرژی (۳۹.۱) و (۳۶.۱) در فضای تخت تبدیل میشوند. با توجه به معادلات (۳۸.۱) و (۵۶.۱) داریم،

$$f_s(\hat{n}) = f_f(\hat{n})g(\lambda, \hat{n}), \qquad (\Delta Y.)$$

به طوری که،

$$g(\lambda, \hat{n}) = \sqrt{\lambda(N+1-\hat{n}) + \sqrt{(1+\frac{\lambda^2}{4})}}(\lambda \hat{n} + \sqrt{1+\frac{\lambda^2}{4}}).$$
(۵۸.۱)

واضح است که در حد فضای تخت، (\hat{n}, \hat{n}) به سمت واحد میل می کند و لذا معادلهی (۵۷.۱) به معادلهی (۳۹.۱) تبدیل می گردد. بنابراین، به طور خلاصه: – می توان جبر نوسانگر هماهنگ دوبعدی را به عنوان جبر یک نوسانگر هماهنگ یک بعدی تغییر شکل یافته با تابع تغییر شکل $f_f(n)$ در نظر گرفت. – می توان جبر نوسانگر هماهنگ بر روی کره را به عنوان تغییر شکل یافته یجبر نوسانگر هماهنگ بر روی صفحه تخت با تابع تغییر شکل $g(\lambda, n)$ در نظر گرفت. بدین سان، برای تابع تغییر شکل f_n ، از جبر تغییر شکل یافته ی نوسانگر هماهنگ، یک بعیبیر هندسی ارائه شده است [۱۴].

۳.۵.۱ حالتهای همدوس در فضای هیلبرت با بعد متناهی

با استفاده از توابع تغییر شکل $f_f(\hat{n})$ و $f_s(\hat{n})$ و جایگذاری آنها در رابطهی (۱۱.۱) درمییابیم که

$$\hat{A}|0\rangle = 0 = \hat{A}^{\dagger}|N\rangle. \tag{(aq.1)}$$

بنابراین برای هر مقدار ثابت N (یا مقدار ثابت انرژی E_N) با یک فضای هیلبرت با بعد متناهی مواجه می شویم. هدف در این بخش ساخت حالتهای همدوس متناظر با فضای تخت و کره در این فضای هیلبرت با بعد متناهی است.

حالتهای همدوس غیرخطی روی فضای تخت

با استفاده از معادلات (۱۱.۱) و (۳۹.۱) در فضای تخت چنین داریم،

$$\begin{split} \hat{A}|n\rangle &= \chi_n^{(N)}|n-1\rangle, \\ \hat{A}^{\dagger}|n\rangle &= \chi_{n+1}^{(N)}|n+1\rangle, \end{split} \tag{\mathbf{F}.1)}$$

که در آن داریم،
$$\chi_n^{(N)} = \sqrt{n(N+1-n)}.$$
 (۶۱.۱)

حال برای تعریف حالتهای همدوس از معادلهی (۲۴.۱) استفاده کرده و داریم $|z\rangle_f = (1+|z|^2)^{-\frac{N}{2}} \exp(z\hat{A}^{\dagger})|0\rangle = (1+|z|^2)^{-\frac{N}{2}} \sum_{n=0}^{N} \sqrt{\binom{N}{n}} z^n |n\rangle,$ (۶۲.۱) که در آن z یک عدد مختلط است.

حالتهای همدوس غیرخطی روی یک کره در مورد کره، با استفاده از روابط (۵۷.۱) و (۳۹.۱) چنین بدست می آوریم، $\hat{A}|n\rangle = [g(\lambda, n)]\chi_n^{(N)}|n-1\rangle,$ $\hat{A}^{\dagger}|n\rangle = [g(\lambda, n+1)]\chi_{n+1}^{(N)}|n+1\rangle.$ (۶۳.۱)

بنابراین همانند فضای تخت، حالتهای همدوس قطع شده را بر روی کره بنا میکنیم،

$$|z\rangle_{s} = \mathcal{N}(|z|^{2})^{\frac{-1}{2}} \exp(z\hat{A}^{\dagger})|0\rangle = \mathcal{N}(|z|^{2})^{\frac{-1}{2}} \sum_{n=0}^{N} \sqrt{\binom{N}{n}} [g(\lambda, n)]! z^{n}|n\rangle, \quad (\pounds \P. 1)$$

که در آن، ضریب بهنجارش با عبارت زیر داده میشود،
$$\mathcal{N}(|z|^2) = \sum_{n=0}^N egin{pmatrix} N\\n \end{pmatrix} ([g(\lambda,n)]!)^2 |z|^{2n}.$$
 (۶۵.۱)

۴.۵.۱ رابطهی تفکیک واحد

در این بخش نشان میدهیم که حالتهای همدوس ساخته شده روی فضای تخت و روی کره تشکیل یک مجموعهی ابرکامل میدهند. به این منظور باید نشان دهیم که یک تابع سنجهی مشکیل یک مجموعهی ابرکامل میدهند. به این منظور باید نشان دهیم که یک تابع سنجهی $m(|z|^2)$ $m(|z|^2) = m(|z|^2) \int d^2 z |z\rangle m(|z|^2) \langle z| = \sum_{n=0}^{N} |n\rangle \langle n| = I_N.$ (۶۶.1)

$$m_f(|z|^2) = \frac{N+1}{\pi} \frac{1}{(1+|z|^2)^2}.$$
(9Y.1)