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ABSTRACT

ON THE SPECTRUM OF A MODULE OVER A

COMMUTATIVE RING

BY
MEHRI MOBINI

Let M be a module over a commutative ring R . A submodule
K of M is called prime if K#M and whenever r eR and m eM
satisfy rmeK then re(K:M) or meM, where (K:M)= {reR:r
McK}. Clearly this is a generalization of the notion of prime
ideals of rings .

We shall investigate when the spectrum of M, denoted by
spec(M) consisting of all prime submodules of M has a Zariski
topology analogous to that for R.

We shall prove that if R is a one- dimensional Noetherian
domain then the R-module M is primeless if and only if M is a
torsion divisible R-module. We say that M is primeless if
spec(M)= . We shall prove that an R-module M is a top
module if and only if every prime submodule of M is
extraordinary . We say that M is a top module if spec(M) has a
Zariski topology .

Z . A . EL —Bast and P.F . Smith have proved that if M is

finitely generated then M is a multiplication module if and only

v




if M/PM is cyclic for all maximal ideals P of R . We shall prove
that if M is finitely generated then M is a muliiplication module
if and only if M is a top module .

Finally we shall prove that a projective R-module M is a top
module if and only if M is locally cyclic . We say M is locally
cyclic if Mp is a cyclic module over the local ring Rp for every

prime ideal P of R .
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CHAPTER 1
INTRODUCTION

1.1. The Scope of the Dissertation

Throughout this dissertation ,all rings R are commutative with
identity and all modules are assumed to be unitary .

Let R be aring and let M be an R-module . A submodule K of
M is called prime if K#M and whenever r eR and m eM satisfy
rmeK then r e(K:M) or meK ,where (K-M)={r eR: rMcK}.

In section 2 of this chapter ,we study some properties of
prime submodules of a module .Then in section 3 we define the
Zariski topology on spec( R ) and extend this notion to modules .

In chapter Il we study the properties of primeless modules.An
R-module M is called primeless if spec( M) = Zwhere spec( M )
denotes the collection of prime submodules of M . In this chapter
we prove that if R is a one— dimensional Noetherian domain

then the R—module M is primeless if and only if M is a torsion
divisible R-module.

In chapter IIl we investigate conditions on an R-module
under which the sets V(N ) satisfy the axiom for the closed sets

of a topology on spec( M ),where for any submodule N of an R-
module M we define V(N ) to be the set of all prime submodule
of M containing N . Also we prove that if R is a perfect ring then




an  R-module is a top module if and only if it is cyclic .Note that
M is said to be a top module if the collection of all subsets V(N)
of spec(M) is closed under finite unions.

ZA.EL-Bast and P.F.Smith have proved in [2 ] that if M is
finitely generated then M is a multiplication module if and only if
M/PM is cyclic for all maximal ideals P of R .In chapter IV,by
this argument we prove that if M is finitely generated then M is a
multiplication module if and only if M is a top module.

In chapter V, we investigate conditions on an R-module under
which top modules are locally cyclic and it is proved thata
projective R-module M is a top module if and only if Mis
locally cyclic . Recall that an R-module M is called locally cyclic
if Mp is a cyclic module over the local ring Rp for every prime
ideal P of R. Insection 2 of chapter V we find conditions on R-
modules under which direct sum of top modules is a top module
and conclude that M= @,.; M, is a top module if and only if M,
(i€l) are prime-compatible top modules, i.e. Sfor iz inI there
does not exist a prime ideal P in R with specp(M;) and specp (M; )

are both hon-empty :

1.2. Prime Submodules
Let M be an R-module. For any submodule N of M we denote
the annihilator of M/N by (N:M) ,i.e. (N:M)= {reR: rMcN}.




Definition 1.2.1. Let R be a ring and let M be an R-module . A
submodule K of M is called prime if KM and whenever r R and
meM satisfy rmeK thenre (K:M) or mek .

Clearly, any prime ideal of R is a prime R-submodule of the
R-module R.

Example 1.2.2. The torsion submodule T(M) of M over an
integral domain is a prime submodule if T, (M) #M , because if
rmel(M) for some 0= R and some meM, then there exists
o= €R such that ¥Yrm=0 . Since R is adomain, ¥r#0 and so
meT(M). Clearly , if r=0 then re(T(M):M) . [0

Lemma 1.2.3. A submodule K of an R-module M is prime if
and only if P=(K:M) is a prime ideal of R and the (R/P)-module
M/K is torsion-free .

Proof :Let K be a prime submodule of M. Also suppose that
rr’eP and r &P, for some r, r’eR . Then rr "McK and since r P
r'McK . Thus r’'eP and Pis a prime ideal of R . Now we know
that M/K is an R/P-module | because P=Ann(M/K) . suppose
that  (r+P)(m+K)=0 , for some r+PcR/P and m+K eM/K.
Therefore rm+K=0 and hence rmek . Consequently reP or
mekK , ie r+P=0 or m+K=0 . Thus the R/P-module M/K is
torsion-free. Conversly , we assume that rm eKandreP , where
reR and meM . Hence rm+K=(r+P)(m+K)=0 . Since M/K is a
torsion-free R/P-module then m+K=0 and so mekK . It follows

that K is a prime submodule of M . [7




If K is a prime submodule of M and P = (K:M) then K is called
a P —prime submodule of M .

Example 1.2.4. If R is a simple ring , then every non-zero R-
module M of R is torsion-free, since for any o#x eM, ann(x) #R
and hence ann (x)=0 . Also for any proper submodule N of M,
(N:-M)=0 and ance (0) is the only maximal ideal of R(0)is
prime. It follows that a simple ring R has the property that every
proper submodule N of M is prime . [7

Corollary 1.2.5. Let K be any submodule of an R-module M
such that (K:-M) is a maximal ideal of R . Then K is a prime
submodule of M . In particular, mM is a prime submodule of an
R-module M for every maximal ideal m of R such that mM=M.

Proof: Since (K:M)#R then K#M and since (K:M)=m isa
maximal ideal of R then R/m is a field and M/K is a vector space
over R/m.Nowif FX=0andrz0where r =r+m for some r R
and x=x+K for some xeMthen 7~ 7 x =o and so x=0 . Thus
MK is a torsion—free R/m-module . It Jollows that K is a prime
submodule of M by Lemma 1.2.3. Now if for some maximal ideal
m of R mM=M, then it is clear that (mM:M)=m .Thus mM is q
prime submodule of M . [7

Example 1.2.6. Every proper subspace of a vector space is
prime .

Proof : LAet V be a vector space over the fleld F and W be a
proper subspace of V. Since rV=V for every 0zr €F then (W:V)




=0 and since (0) is a maximal ideal of F therefore by Corollary
1.2.5 W is a prime submodule of V. [J

Corollary 1.2.7. Let N be a proper submodule of an R-module
M and let m be a maximal ideal of R . Then N is m-prime if and
only if mMcN . Consequently, if N is an m-prim submodule of
M, then so is every proper submodule of M containing N.

Proof : The necessity is trivial . Conversely if mMcN then
mc(N:M)and since N #Mhence (N:M)#R therefore
m=(N.M) . It follows that N is an m —prime submodule of M by
Corollary 1.2.5. [J

Proposition 1.2.8. If N is a maximal submodule of an R-
module M, then (N:M) is a maximal ideal of R and N is a prime
submodule .

Proof : Let (N:M) cmcR , where m is an ideal of R. Since N
is a maximal submodule of M hence M/N is a simple R —module .
It implies that M/N is cyclic and M/N=(x+N)R for some xeM .
Thus m( M/N )=M/N or m( M/N )=0 . If m(M/N)=M/N then
m(M/N)=(x+N)R and hence there exists rem and y+NeM/N
(veM) such that x+N=r(y+N) . On the other hand ,
ytN=r(x+N) , for some r’eR , therefore (x-rrx)+N=
(1-rr)(x+N)=0 . It follows that I-rr ‘eAnn(M/N)=(N-M) cm .
Since rem , 1=I-r+#¥ em so m=R . Now if m(M/N)=0 then

mMcN and so mc(N:M)cm . Hence (N:M)=m . Therefore




(N:M) is amaximal ideal of R . By Corollary 1.2.5 N is a prime
submodule of M . [J

Remark 1.2.9. If m is a maximal ideal of a ring R, then not
every m-prime submodule of an R-module M is a maximal
submodule . In Example 1.2.6 we can see that (0) is a maximal
ideal and all maximal or non-maximal subspaces of vector
spaces V are (0) — prime submodule in V .

Corollary 1.2.10. If M is a finitely generated module , then
every proper submodule of M is contained in a prime submodule.

Proof : Let N be a proper submodule of M and let A be the set
of all submodules of M containing N . A is non-empty, because
Ned . By Zorn's Lemma , it can easily be proved that there exists
a maximal element L in A . Thus L is a maximal submodule of M
and by Proposition 1.2.8 L is a prime submodule of M
containing N . [J

Definition 1.2.11. An R-module M is called a multiplication
module proizided that for every submodule N of M there exists an
ideal I of R such that N=IM .

Theorem 1.2.12. Let M be a non-zero R —module, where R =0,
If M is a multiplication module , then M has at least one prime
submodule .

Proof : Let M#0 and O0#meM . Then I={reR | rm=0} is a

proper ideal of R and hence IcP for some maximal ideal P of R.
If M=PM then since Rm=AM | Jor some ideal A of R , we have
Rm=AM=PAM=PRm=Pm . T, herefore (1-r)m=0 for some r <P

6




and hence (1-r)el. Since IcP then (1-v)€P and so | eP, a
contradication . Thus M#PM . Since (PM:M)=P is a maximal
ideal , PM is a prime submodule of M by Corollary 1.2.5 . [J

For any R-module M , let spec(M) denotes the collection of all

prime submodules of M. Now let H be any R-module For any
prime ideal P of R we define:

specp(H)={L espec(H) | (L:H)=P}

Lemma 1.2.13 . Let P be aprime ideal of R and let M be an
R-module . Let N be any submodule of M and let K especp(M).
Then KNN=N or KNN especp(N) .

Proof : Let KAN=N . For any r eP we have rN crMcK , also
rNcN then ¥'NcKNN . Hence P(KNN:N) . Now suppose that
re(KNN:N) then rN cKNNcK. Since N cK and K is a prime
submodule of M then reP . Thus (KNN:N)=P. Let rx eKNN ,
where reR and xeN |, hence rxeK and so reP or xeK [t

follows that r P or x eKNN. Thus KN especp (N) .

1.3. Zariski Topology on Spec(M)
Recall thot spec(R) denotes the collection of all prime ideals of
R
For an ideal A of R we define V(4)={P espec(R):AcP} . It can
easily be checked that V({0})=spec(R) also
V(R) =&
V(4) WV(B)=V(4B)




Miea V(A3 )=V(E 1c445)
Where A and B and A, ( A€A) are ideals of R. Thus the V(A) are
the closed sets for a topology on spec(R) , called the Zariski
topology.

Now we extend this notion to modules . For any submodule N
of R-module M we define V(N) to be the set of all prime
submodules of M containing N . Of course , V(M) is just the
empty set and V(0) is spec(M) .

Lemma 1.3.1. For any family of submodules N; (i 1) of M,

M iet V(N )=V(2ie1 N; )

Proof: Let Le n ;o4 V(N,) hence N, cL for any i €l then
2 et N;cL.Conversly, if LeV(X N)then N;cX N, for
any iel, hence N ;o N; L .[7

Thus if &M) denotes the collection of all subsets V(N) of
spec(M)  then &M) contains the empty set and spec(M) , also
&M) is closed under arbitrary intersections. Now if M) is
closed under finite unions , i.e. Jor any submodules N and L of M
there exists a submodule J of M such that VIN)UV(L)=V(J) , in
this case &M) satisfies the axioms Jor the closed subsets of a

topological space and therefore M is a module with Zariski

topology or a top module for short.




CHAPTER 11
PRIMELESS MODULES

In this chapter we study the properties of primeless modules
and prove that if R is a one-dimensional Noetherian domain then
an R-module M is primeless if and only if M is a torsion divisible
R-module.

For any R-module Mlet spec(M) denote the collection of

prime submodules of M. Recall that for any ring R, it is known that
R#0) if and only if spec(R) # & However we can see in this
chapter that for a module M it is not always true that if M=#(0)
then spec(M) = We call such modules M primeless.

For example the group Z(p”) is a primeless Z-module. To see
why this is the case, first we define G,={a eQ/Z : a=r/p"+Z , for
some reZ} (neNU{O}) . It can easily be checked that for any
neNAO}, G, is a submodule of Z(p™) and all the proper
submodules of Z(p”) are G, s(ne NUAO}Y). We claim that
(GZ(p”) )=0for every ne NAD}. Suppouse that

(G:Z(p”) )=(0) for some ne NAO}and let 0= e(G,:Z(p") ).

Put r =p'a,where acZandt is the largest integer

in NU{O}such that p' divides v . Let o =1/p"""" +Z. Then

ra’=p'a)p'"'+z —a/p™'+Z and ra’€G, , we have a




