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ABSTRACT

GEOMETRIC CONTROL OF ROBOTIC
LOCOMOTION SYSTEMS

BY

ALIREZA ASNAFI

Despite linear systems that admit general and unified approaches in their analysis

‘and design, nonlinear systems do not in general lend themselves to general rules.

During the past two decades, some researchers have tried to formulate general
ideas for these systems using some tools from differential geometry. The invariant
theme that exists in the language of differential geometry causes high level of
generality and generality promotes the view points of system understanding,
modeling and design.

In this thesis, using fiber bundle structure for the geometric approach, we try 1o
find some unified rules in both forward and inverse dynamics problems for a
variety of robotic locomotion systems. We show that once this structure is
assigned to a locomotion system, we can talk about the gaits and behaviors that it
may produce without numerically solving the dynamics of the overall system.
Also we can design some unified open loop motion planner for both regulation
and trajectory tracking problems.

Toward this goal we develop some unified formulas that relate the shape variables
dynamics to the corresponding net displacement of a robotic locomotion system.
Once these formulas are obtained we present a unified method to investigate the
nonlinear behavior, find gait generation techniques and design motion planners. It
is shown that in both symmetric and principally kinematic locomotion, these
formulas are related to the components of the curvature of the connection while in
inixed one, the components of locked inertia tensor and the scaled momenta must
also be considered.

Using geometric approach, some merits of locomotion as compared to

conventional mechanical systems are also studied.
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