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Abstract
In this thesis, we study square-free monomial ideals of the polynomial ring

S = K[x1, . . . , xn] which have a linear resolution. By remarkable result of

Bayer and Stilman [BS] and the technique of polarization, classification of

homogeneous ideals with linear resolution is equivalent to classification of

square-free monomial ideals with linear resolution. However, classification

of square-free monomial ideals with linear resolution seems to be difficult

because by Eagon-Reiner Theorem [ER], this is equivalent to classification

of Cohen-Macaulay ideals.

It is worth to note that, square-free monomial ideals in S are in one-to-

one correspondence to Stanley-Reisener ideals of simplicial complexes on one

hand and the circuit ideal of clutters from another hand. This correspon-

dence motivated mathematicians to use the combinatorial and geometrical

properties of these objects in order to get the desired algebraic results.

Classification of square-free monomial ideals with 2-linear resolution, was

successfully done by Fröberg [Fr] in 1990. Fröberg observed that the circuit

ideal of a graph G has a 2-linear resolution if and only if G is chordal, that is,

G does not have an induced cycle of length > 3. In [Em, ThVt, VtV, W] the

authors have partially generalized the Fröberg’s theorem for degree greater

than 2. They have introduced several definitions of chordal clutters and

proved that, their corresponding circuit ideals have linear resolutions.

Viewing cycles as geometric objects (triangulation of closed curves), in

this thesis we try to generalize the concept of cycles to triangulation of

pseudo-manifolds and get a partial generalization of Fröberg’s theorem for

higher dimensional hypergraphs.

All the results in Chapters 4 and 5 and some results in Chapter 3 are

devoted to be original.

Keywords: Minimal Free Resolution, Castelnuovo-Mumford Regularity,

Clutter, Betti Number, Pseudo-manifold, Triangulation, Simplicial Complex.

Mathematics Subject Classification[2010]: 13D14, 13D02, 13D45,

13F55, 16E05, 51H30.
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Résumé
Le sujet de cette thèse, est l’étude d’idéaux monomiaux libres de carrés de

l’anneau de polynômes S = K[x1, . . . , xn], qui ont une résolution linéaire.

D’après un résultat remarquable de Bayer et Stilman [BS] et en utilisant

la polarisation, la classification des idéaux monomiaux ayant une résolution

linéaire, est équivalente à la classification des idéaux monomiaux libres de

carrés ayant une résolution linéaire. De plus le théorème de Eagon-Reiner,

établit une dualité entre les idéaux monomiaux libres de carrés ayant une

résolution linéaire et les idéaux monomiaux libres de carrés Cohen-Macaulay,

ce qui montre que le problème de classification des idéaux monomiaux libres

de carrés ayant une résolution linéaire est très difficile.

Nous rappelons que, les idéaux monomiaux libres de carrés sont en corre-

spondance biunivoque avec les complexes simpliciaux d’une part, et d’autre

part avec les clutters. Ces correspondances nous motivent pour utiliser

les propriétés combinatoires des complexes simpliciaux et des clutters pour

obtenir des résultats algébriques. La classification des idéaux monomiaux

libres de carrés ayant une résolution linéaire engendrés en degré 2 a été faite

par Fröberg [Fr] en 1990. Fröberg a observé que l’idéal des circuits d’un

graphe G a une résolution 2-linéaire si et seulement si, G est un graphe

de cordes, i.e. il n’a pas de cycles minimaux de longueur plus grande que

4. Dans [Em, ThVt, VtV, W] les auteurs ont partiellement généralisé les

résultats de Fröberg à des idéaux engendrés en degré ≥ 3. Ils ont intro-

duit plusieurs définitions de clutters de cordes et démontré que les idéaux de

circuits correspondant ont une résolution linéaire.

Nous pouvons voir les cycles du point de vue topologique, comme la

triangulation d’une courbe fermée, dans cette thèse nous utiliserons cette

idée pour étudier des clutters associés à des triangulation de pseudo manifolds

en vue d’obtenir une généralisation partielle des résultats de Fröberg à des

idéaux engendrés en degré ≥ 3. Nous comparons notre travail à ceux de

[Em, ThVt, VtV, W]. Nous présentons nos résultats dans le chapitres 4 et 5.

Mots clés: Résolution libre minimale, Régularité de Castelnuovo-Mumford,

Idéaux monomiaux, Clutters, Nombres de Betti, Pseudo-manifold, Triangu-

lation.

Classification AMS[2010]: 13D14, 13D02, 13D45, 13F55, 16E05, 51H30.
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Introduction

Castelnuovo-Mumford regularity is one of the most fundamental invariants

in Commutative Algebra and Algebraic Geometry. One of its first hidden

appearances may be found in Castelnuovo’s work on linear systems on smooth

projective space curves [Cas, 1893]. Castelnuovo’s result, gives a sharp upper

bound on the largest degree r such that, the complete linear system of the

r-fold plane sections on the given curve, is not cut out by surfaces of degree r.

Although this result is of fairly geometric appearance, Castelnuovo’s method

of proof has a rather algebraic flavor.

Another early invisible occurrence of Castelnuovo-Mumford regularity

was initiated in the work of Hermann [Her, 1926]. The results of Hermann

show that, the minimal free resolution of an ideal generated by finitely many

homogeneous polynomials, can be computed in a (finite) number of steps

which depends only on the number of indeterminates of the ambient ring

and the maximal degree of the given polynomials.

Hermann’s work is not at all constructive, and so it does not give rise

to an explicit algorithm. It was indeed only around 1980, when such algo-

rithms became practicable, based on Gröbner base techniques, implemented

in Computer Algebra Systems like Macaulay, CoCoA, Singular and powered

by high performance computers. And indeed:

Castelnuovo-Mumford regularity provides the ultimate bound of

complexity for these algorithms.

D. Bayer and M. Stilman [BS2] showed that, an estimate of the regularity of

an ideal, gives a bound on complexity of algorithms for computing syzygies.

In 1966, Mumford gave a first proper definition of Castelnuovo-Mumford

regularity (see [M]), which he called Castelnuovo regularity. In fact, Mumford

did define the notion of being m-regular in the sense of Castelnuovo for a

coherent sheaf of ideals over a projective space and a given integer m. More

precisely, a sheaf of ideals over a projective space is called m-regular, if for

all positive values of i, the i-th Serre cohomology group of the (m − i)-fold
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twist of this sheaf vanishes. The minimal possible value of m is what today

usually is called the Castelnuovo-Mumford regularity of the sheaf of ideals

in question. Moreover, Mumford did prove a fundamental bounding result,

namely:

The Castelnuovo-Mumford regularity of a coherent sheaf of ideals

over a projective space is bounded by the Hilbert polynomial of

this ideal.

In fact Mumford’s arguments allow to make this bound explicit. Although

Castelnuovo-Mumford regularity was originally defined in terms of sheaf co-

homology, it may be expressed in terms of degrees of syzygies and hence is

of basic significance in classical Projective Algebraic Geometry.

Castelnuovo-Mumford regularity also found much interest in Commuta-

tive Algebra. In 1984, D. Eisenbud and S. Goto [EG] made explicit the link

between this algebraic Castelnuovo-Mumford regularity of a graded module

over a polynomial ring and its minimal free resolution.

One of the aspects that makes the regularity very interesting, is that

Castelnuovo-Mumford regularity can be computed in different ways. In pure

algebraic setting, it is defined as follows:

Definition 0.0.1. Let K be a field and let S be a polynomial ring over

K. Let M = ⊕i∈ZMi be a finitely generated graded S-module. In most

interesting case, M is an ideal of S. For every i ∈ N ∪ {0}, one defines:

tSi (M) = max{j : βKi,j(M) �= 0}

where βKi,j(M) is the i, j-th graded Betti number of M as an S-module, i.e.

βKi,j(M) = dimK TorSi (K,M)j

and tSi (M) = −∞, if it happens that TorSi (K,M) = 0.

The Castelnuovo-Mumford regularity of M , reg (M), is given by:

reg (M) = sup{tSi (M)− i : i ∈ Z}.

We say that M has a d-linear resolution, if M is generated by homoge-

neous elements of degree d and reg (I) = d. That is, the graded minimal free

resolution of I is of the form:

0 −→ Sβs(−d− s) −→ · · · −→ Sβ1(−d − 1) −→ Sβ0(−d) −→ I −→ 0.

2



Among all the interesting problems in Castelnuovo-Mumford regularity,

classification of ideals with linear resolution is of great importance. Proving

that a class of ideals has a d-linear resolution, is difficult in general. However,

some classes of ideals with linear resolution may be found in [AHH, AHH2,

ANH, CoH, Em, EO, EOS, Fr, HHZ, ThVt, Mo, MNYZ, VtV, W, Zh].

Classification of square-free monomial ideals with 2-linear resolution, was

successfully done by Fröberg [Fr] in 1990. Fröberg observed that, the circuit

ideal of a graph G has a 2-linear resolution if and only if G is chordal, that

is, G does not have an induced cycle of length > 3.

Theorem 0.0.2 (Fröberg’s Theorem [Fr]). Let G �= Cn,2 be a graph on vertex

set [n] and I = I(Ḡ) be the circuit ideal of G. The ideal I has a 2-linear

resolution if and only if G is chordal.

Fröberg’s Theorem in particular implies that, having 2-linear resolution

does not depend on the characteristic of the base fieldK. However, in general

having linear resolution does depend on the characteristic of the base field

(see for instance, Example 5.3.19).

Trying to generalize Fröberg’s result for square-free ideals generated in

degree greater than 2, some mathematicians have introduced various def-

initions of chordal hypergraphs and they proved that the corresponding

circuit ideals have a linear resolution over any field K (see for example

[Em, ThVt, VtV, W]).

In this thesis, we study square-free monomial ideal with linear resolution.

Our method in this thesis, is to look at square-free monomial ideals in both

aspects of combinatorics and geometrics.

In Chapter 1, we review basic notations and definitions concerning graded

minimal free resolution, depth of module and local cohomology. The notions

and remarks in this chapter are essential for the remaining of this thesis.

Chapter 2 of this thesis is devoted to introduce the main subject of this

thesis. In this chapter, first we introduce the definition of Castelnuovo-

Mumford regularity and then we study the basic properties of Castelnuovo-

Mumford regularity. As it is mentioned before, the goal of this thesis is to

study square-free monomial ideals with linear resolution, that is, the ide-

als with generators consist of square-free monomials of degree d and its

Castelnuovo-Mumford regularity is again d. In Section 2.2, we will present a

survey of known results on ideals with linear resolution.

Chapter 3 of this thesis is in fact the language of this thesis. First in

Section 3.1, we outline that the classification of homogeneous ideal of S =

3



K[x1, . . . , xn] with linear resolution is equivalent to classification of square-

free monomial ideal with linear resolution. That is why, in the remaining of

this thesis, we consider only square-free monomial ideals of the polynomial

ring S = K[x1, . . . , xn].

In Section 3.2, we deal with the notions of simplicial complexes. With

a simplicial complex Δ, one can associate a square-free monomial ideals IΔ
whose generators correspond to the non-faces of Δ. This ideal is called

Stanley-Reisner ideal of Δ. Note that, there exists a bijection between

square-free monomial ideal I ⊂ K[x1, . . . , xn] and simplicial complexes Δ

on vertex set [n], given by Δ ↔ IΔ. This correspondence, motivated us

to investigate the interaction between the homological properties of these

objects and algebraic properties of square-free monomial ideals.

Alexander duality plays an important role in study of minimal free resolu-

tion of Stanley-Reisner ideal. In particular, Eagon and Reiner used Alexander

dual complexes and proved the following interesting theorem:

Theorem 0.0.3 (Eagon-Reiner). Let Δ be a simplicial complex on vertex

set [n]. The ideal IΔ ⊂ S = K[x1, . . . , xn] has a q-linear resolution if and

only if Δ∨ is Cohen-Macaulay over K of dimension n− q.
This theorem and Mayer-Vietoris long exact sequence on local cohomolo-

gies, will be frequently used in Chapter 4 and play a key role in many proofs.

We recall that, all the generators of an ideal with linear resolution have the

same degree. So, it is worth to find a correspondence between square-free

monomial ideals generated in same degree with some other combinatorial

or geometrical objects rather than simplicial complexes. This leads us to

investigate clutters and (pseudo-)manifolds rather than simplicial complexes.

With a d-uniform clutter C on vertex set [n], we associate a square-free

monomial ideal, I(C̄), whose generators are:{∏
i∈F

xi : F ⊂ [n], |F | = d, F /∈ C
}
.

This ideal is called the circuit ideal of C. Note that, we have a bijection

between square-free monomial ideal I ⊂ K[x1, . . . , xn] generated in the same

degree d, with d-uniform clutters, given by C ↔ I(C̄). Moreover, any triangu-

lation of a manifold or a pseudo-manifold gives rise to a square-free monomial

ideal in K[x1, . . . , xn].

The aim of this chapter is to study properties of simplicial complexes,

clutters and triangulations.

4



Chapter 4 is the combinatorial core of this thesis. The goal of this chapter

is to do some operations on a given graph (or clutter) to reduce it to a

smaller graph (or clutter), such that the Castelnuovo-Mumford regularity

of corresponding circuit ideals, does not change under these operations. As

consequences of these operations:

• We will find some alternative proofs for Fröberg’s Theorem.

• We will find an alternative proof for linearity of circuit ideals of gener-

alized 3-uniform chordal clutter as defined by Emtander.

• We introduce a combinatorial criterion in order to check that if the

circuit ideal of a given 3-uniform clutter has a linear resolution.

• We will find a large class of ideals with linear resolution.

Also, we compare several definitions of chordal clutters and some open prob-

lems for further studies are given in this chapter.

To attack to the problem of classification of ideas with d-linear resolu-

tion, in Chapter 5, we investigate clutters whose their circuit ideals do not

have linear resolution, but any proper subclutter of them has a linear resolu-

tion. This chapter generalize many of the results in Chapter 4 for arbitrary

d-uniform clutters. But the method in this chapter, is not algebraic combi-

natorics but is algebraic topology.

The circuit ideal of clutters which are minimal to linearity, is contained

in the class of square-free monomial ideals IΔ, with indeg (IΔ) = 1 + dimΔ.

So, first we deal with the class of square-free monomial ideals IΔ with

indeg (IΔ) ≥ 1+dimΔ. The results in this section, enable us to find precisely,

the minimal free resolution of ideals which are minimal to linearity. Some nice

classes of clutters which are minimal to linearity are pseudo-manifolds, but

unfortunately, pseudo-manifolds are strictly contained in this class. However,

using the results in this chapter, we can compute the graded Betti numbers

of the circuit ideals of an arbitrary pseudo-manifolds (like a triangulation of

sphere, projective plane, Klein bottle, etc.).

Also, for two d-uniform clutters C1 and C2, we will prove that:

reg I(C1 ∪ C2) = max{reg I(C̄1), reg I(C̄2)}

whenever, V (C1)∩V (C2) is a clique or SC(C1)∩SC(C2) = ∅. Again, this leads
to an alternative proof for Fröberg Theorem as well as linearity of circuit ideal

of generalized d-uniform chordal clutters as defined by Emtander.

5



Finally, in the last section, for a given square-free monomial I generated

in degree d, we define a square-free monomial ideal Î, generated in degree

d+ 1 which is very closed to I in regularity. In fact we have:

reg (Î) =

{
reg (I), if reg (I) > d;

1 + reg (I), if reg (I) = d.

This enables us to generate a square-free monomial ideal with (d+ 1)-linear

resolution from a square-free ideal I with d-linear resolution.

The results in Chapter 5 have many hidden ideas for further studies in

this area.

We acknowledge the support provided by the Computer Algebra Systems

CoCoA and Singular [CCA, Si] for the extensive experiments which helped

us to obtain some of the results in this thesis. Throughout this thesis, all

known definitions and statements are quoted with a reference afterwards and

all others with no references are supposed to be new. The results in Chapter 4

and Chapter 5 appear(ed) in [MNYZ, MYZ, MYZ2].
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Chapter 1

Commutative Algebra

In this chapter, we recall some basic notions and results that will be used

later. Throughout this thesis, all rings are considered to be commutative

with the identity 1 �= 0.

1.1 Graded Modules, Hilbert Series

In commutative algebra, graded rings and graded modules are of great im-

portance, especially local rings. That is, graded rings with just one graded

maximal ideal. Graded local rings share many properties with polynomial

rings. For example, consider the polynomial ring S = K[x1, . . . , xn] in n

variables over a field K; if n > 0, this has infinitely many maximal ideals but

(x1, . . . , xn) ⊂ S is the only graded maximal ideal of S.

Definition 1.1.1. A ring A is called graded (or more precisely, Z-graded),
if there exists a family of subgroups {An}n∈Z of A such that,

(a) A = ⊕nAn (as abelian groups), and

(b) An · Am ⊂ An+m, for all n,m.

Note that if A = ⊕nAn is a graded ring, then A0 is a subring of A, 1 ∈ A0

and An is an A0-module for all n.

Let A be a ring and x1, . . . , xn be indeterminates over A. For m =

(m1, . . . , mn) ∈ Nn, let xm = xm1
1 · · ·xmn

n . Then the polynomial ring S =

A[x1, . . . , xn] is a graded ring, where:

Si = {
∑
m∈Nn

rmxm : rm ∈ A and m1 + · · ·+mn = i}.

7



1.1 Graded Modules, Hilbert Series 1. Commutative Algebra

This is called the standard grading of the polynomial ring A[x1, . . . , xn].

A product xm1
1 · · ·xmn

n with mi ∈ N is called a monomial. The set of

monomials of S, is denoted by Mon(S). A monomial xm1
1 · · ·xmn

n is called

square-free monomial, if mi ≤ 1, for i = 1, . . . n.

An ideal I ⊂ S is called (square-free) monomial ideal, if it is generated

by (square-free) monomials.

Definition 1.1.2. Let A be a graded ring andM an A-module. We say that

M is a graded A-module (or has an A-grading), if there exists a family of

subgroups {Mn}n∈Z of M such that,

(a) M = ⊕nMn (as abelian groups), and

(b) An ·Mm ⊂Mn+m, for all n,m.

If u ∈M \ {0} and u = ui1 + · · ·+uik where uij ∈Mij \ {0}, then ui1, . . . , uik
are called the homogeneous components of u.

For a non-zero element u ∈ Mi, the degree of u is denoted by deg(u)

which we set to be i.

We let M (A) be the category of finitely generated graded A-modules. A

homogeneous homomorphism ϕ : M −→ N of graded A-modules of degree

d is an A-module homomorphism such that ϕ(Mi) ⊂ Ni+d, for all i. For

example, if f ∈ A is homogeneous of degree d, then the multiplication map

A(−d) −→ A, with g �→ fg is a homogeneous homomorphism. Here, for

a graded A-module W and an integer a, one denotes by W (a) the graded

A-module whose graded components are given by W (a)i = Wa+i. One says

that, W (a) arises from W by applying the shift a. The morphisms being the

homogeneous homomorphisms M −→ N of degree 0, simply called homoge-

neous homomorphisms.

Definition 1.1.3. LetM = ⊕Mn be a graded A-module and N a submodule

of M . For each n ∈ Z, let Nn = N ∩Mn. If the family of subgroups {Nn}
makes N into a graded A-module, we say thatN is a graded (or homogeneous)

submodule of M . The graded submodules of A is called homogeneous (or

graded) ideal of A.

Note that for any submodule N of M , An · Nm ⊂ Nn+m. Thus, N is

graded if and only if N = ⊕nNn. In particular, every (square-free) monomial

ideal of A is homogeneous ideal.

Proposition 1.1.4. Let A be a graded ring, M a graded A-module and N a

submodule of M . The following statements are equivalent:

8
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(i) N is a graded A-module.

(ii) N =
∑
n

(N ∩Mn)

(iii) For every u ∈ N , all the homogeneous components of u are in N .

(iv) N has a homogeneous set of generators.

Definition 1.1.5. Let S = K[x1, . . . , xn] be a polynomial ring over a field

K with the grading induced by deg(xi) = di, where di is a positive integer.

If M =
∞⊕
i=0

Mi is a finitely generated N-graded module over S, its Hilbert

function and Hilbert series are defined by:

H(M, i) = dimK(Mi) and F (M, t) =

∞∑
i=0

H(M, i)ti.

Theorem 1.1.6 (Hilbert-Serre). Let K be a field and S = K[x1, . . . , xn] a

polynomial ring graded by deg(xi) = di ∈ N+. If M is a finitely generated

N-graded S-module, then the Hilbert series of M is a rational function that

can be written as:

F (M, t) =
h(t)

n∏
i=0

(1− tdi)
, for some h(t) ∈ Z[t].

In particular, if di = 1, for all i, then there is a unique polynomial h(t) ∈ Z[t]
such that:

F (M, t) =
h(t)

(1− t)d , and h(1) �= 0.

The number e(M) = h(1) in the above theorem is called the multiplicity

of the module M .

Definition 1.1.7. Let R be standard graded ring and M be a graded R-

module such that,

h(t) = h0 + h1t+ · · ·+ hrt
r

is the (unique) polynomial with integer coefficients such that h(1) �= 0, hr �= 0

and satisfying

F (M, t) =
h(t)

(1− t)d ,

where, d = dim(M). The h-vector of M is defined by h(M) = (h0, . . . , hr).

9
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Example 1.1.8. If we consider the polynomial ring S = K[x1, . . . , xn] in n

variables over the field K and deg(xi) = 1 (for i = 1, . . . , n), then we have:

H(S, i) = dimK(Si) =

(
i+ n− 1

n− 1

)
,

and for n ≥ 1,

F (M, t) =

∞∑
i=0

(dimK(Si)) t
i =

∞∑
i=0

(
i+ n− 1

n− 1

)
ti =

1

(1− t)n .

1.2 Graded Minimal Free Resolution

Throughout this thesis, we let K be a field, (R,m) a Noetherian graded

local ring with residue field K or a standard graded K-algebra with graded

maximal ideal m. We write S for the polynomial ring K[x1, . . . , xn] with the

standard grading.

We let M be a finitely generated R-module and will assume that M is

graded, if R is graded.

Now, let M be a finitely generated graded R-module with homogeneous

generators m1, . . . , mr and deg(mi) = ai, for i = 1, . . . , r. Then, there exists

a surjective R-module homomorphism F0 =
⊕r

i=1Rei → M with ei �→ mi.

Assigning to ei the degree ai, for i = 1, . . . , r the map F0 −→ M becomes

a morphism in M (R) and F0 becomes isomorphic to ⊕ri=1R(−ai). Thus, we
obtain the exact sequence:

0 −→ U −→
⊕
j

R(−j)βR
0,j −→M −→ 0,

where βR0,j = |{i : ai = j}|, and where U = Ker
(
⊕jR(−j)βR

0,j →M
)
.

The module U is a graded submodule of F0 = ⊕jR(−j)βR
0,j . By Hilbert’s

basis theorem for modules, we know that U is finitely generated and hence we

find again an epimorphism ⊕jR(−j)β
R
1,j → U . Composing this epimorphism

with the inclusion map U → ⊕jR(−j)β
R
1,j , we obtain the exact sequence:⊕

j

R(−j)βR
1,j −→

⊕
j

R(−j)βR
0,j −→ M −→ 0

of graded R-modules. Proceeding in this way, we obtain a long exact se-

quence:

F : · · · −→ F2 −→ F1 −→ F0 −→ M −→ 0

10
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of graded R-modules with Fi = ⊕jR(−j)β
R
i,j . Such an exact sequence is called

a graded free R-resolution of M .

It is clear from our construction that, the resolution obtained is by no

means unique. On the other hand, if we choose in each step of the resolution

a minimal presentation, the resolution will be unique up to isomorphism, as

we shall see later.

A set of homogeneous generators m1, . . . , mr of M is called minimal, if

no proper subset of it generates M .

Lemma 1.2.1. Let m1, . . . , mr be a homogeneous set of generators of the

graded R-module M . Let F0 = ⊕ri=1Rei and let ε : F0 → M be the epimor-

phism with ei �→ mi, for i = 1, . . . , r. Then, the following conditions are

equivalent:

(i) m1, . . . , mr is a minimal system of generators of M .

(ii) Ker (ε) ⊂ mF0, where m is the unique homogeneous maximal ideal of

R.

Let M be a finitely generated graded R-module. A graded free R-

resolution F of M is called minimal, if for all i, the image of Fi+1 → Fi
is contained in mFi. Lemma 1.2.1 implies at once that, each finitely gener-

ated graded R-module admits a minimal free resolution.

The next result shows that, the numerical data given by a graded minimal

free R-resolution of M depends only on M and not on the particular chosen

resolution.

Proposition 1.2.2. Let M be a finitely generated graded R-module and

F : · · · −→ F2 −→ F1 −→ F0 −→ M −→ 0

a minimal graded free R-resolution of M with Fi = ⊕jR(−j)β
R
i,j , for all i.

Then,

βRi,j = dimK TorRi (K,M)j

for all i and j.

The numbers βRi,j are called the graded Betti numbers of M , and βRi =∑
j β

R
i,j(= rankFi) is called the i-th Betti number of M . As long as we work

with the polynomial ring S = K[x1, . . . , xn], we write βKi,j instead of βSi,j.

Also, the number

projdimM = sup{i : TorRi (K,M) �= 0}.

11
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is called the projective dimension of M.

We close this section by stating that, not only are the graded Betti num-

bers determined by a minimal graded free resolution, but also, a minimal

graded free resolution of M is unique up to isomorphisms.

Proposition 1.2.3. LetM be a finitely generated graded R-module and let F
and G be two minimal graded free R-resolutions of M . Then, the complexes

F and G are isomorphic.

Theorem 1.2.4 (Graded Hilbert syzygy theorem, [CLO, Theorem 3.8]).

Let S = K[x1, . . . , xn]. Then every finitely generated graded S-module has a

finite graded resolution of length at most n.

1.3 Tensor Algebra

Let A be a commutative ring and M an A-module. For every integer n ≥ 0,

the A-module n-th tensor power of M is denoted by T n(M) or M⊗n, where
T 0(M) =M⊗0 = A. Sum of the tensors powers, forms a graded A-module:

⊗
M =

∞⊕
j=0

M⊗j .

We shall define a graded A-algebra structure on
⊗

M . By the assignment:

((x1, . . . , xm), (y1, . . . , yn)) �−→ x1 ⊗ · · · ⊗ xm ⊗ y1 ⊗ · · · ⊗ yn
we get an A-bilinear mapM⊗m×M⊗n → M⊗(m+n). Its additive extension to⊗

M ×⊗
M , gives

⊗
M the structure of a graded A-algebra with identity

1A.

The A-algebra
⊗

M is called tensor algebra of M . Obviously,
⊗

M

is not commutative in general. We identify M and T 1(M). The injection

ϕ : M →⊗
M is called the canonical injection of M into

⊗
M . The tensor

algebra is characterized by a universal property.

Proposition 1.3.1 (Universal property of tensor algebras, [Bou, Chapter

III, §5, Proposition 1]). Let E be an A-algebra and f : M → E an A-linear

mapping. Then, there exists unique A-algebra homomorphism g :
⊗

M → E

such that, f = g ◦ ϕ:
M

ϕ ��

f ���
��

��
��

��
�

⊗
M

g

��
E
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