{
g ST

WAy /Y] ).

II

ABTAY




By Maryam Abelghasem Joshaghani .
Supervisor: Dr...Farz’ﬁd Eskandari
Advisor: Dr. Mohammad Reza Salehi Rad
Allameh Tabatabai’e University

E.C.O College of Tnsuranee

Farvardin 1387 |




I




,.,g\...;w

L

Y10 m '%ﬁ;&' ﬁ%fiﬁﬁ%s&#&%ﬁéﬁg AT

=
:éf
E%
%
g
83
F'l
"@
yol
ﬁ
%:EJ
Ruvip
=
;‘%’
2
§

:
i

e R@awﬁ‘ ECOC ,_:'“E F s UPANC% |
TREAE THANKSGIVINGS 30 TOWARD DR GAH

?ﬁ 5 LAHL FORTH iER HELPSM‘% J@GEMENTS

i
i




Content
ADSIFACE it s s e atens 1
Preface s s s 2
Chapter 1: The Bayesian Methods.....cuvoimmnimcncmnesns 4
1.1 INtrodUCHioN s senssssesasssasssssssssensssssssassssispsassssssenses R 5
1.2 Thé Bayesian Paradigm , ................................................................................. 6
1.3 The Prior Distributic;n and/ the Likelihood Function ... 7
1.4 The Sampling Perspective: ESHMAtiONu s 8
1.5 Prediction from Samphing .. ommmsmme, 9
1.6 Categ01'ical data models: Binomial and Poisson Distributions ... 9
1.6.1 Binomial Outcomes .......... 9
1.6.2 Poisson Distribution for Event COUNLS wucnmresssmensssesssssnsessassassesees wreee 1.0
1.7 Analysis through Bayesian Approach ... * .......................................... 12
1.8 Effect of the Prior DistriDUtion v 13
1.9 The selection of the Prior DistribUtionumssmssssserismmisisssons e 15
- 1.9.1 Jeffreys’s General Rule wuuvvessssnsssnn, erren s LD
1.9.2 Maximum EArOPY s e 17
1.9.3 The Use of Diffuse Proper PrOTS . imamsicmmmssmisnmminsssasssssess 17
Conclusion Li s s s s s 18
Chapter 2: Markov Chain Monte Carlo Methods .................................... 19
2.1 INtTOQUCTION mcessmssrsmssrssenssssssssmssssssmssr s s sssr s sssssnsssstssssasssnasessssssssesssssssesessnes 20
2.2 Monte Carlo INtEETation v o s ssssessssssseees 20

2.3 Introduction to Markov CRAINS seerssemsseesessessresssssscesssmssensmsessnessessensessaresesasssssessnsmne 21




[

" 2.4 The Metropolis-Hasting AlZOrithm ..o, 24
2.4.1 The Metropolis-Hasting Sampling as a Markov Chain....ecneomonine. 25
2.5 Burning-in the Sampler s 27
2.6 Choosing a Jumping (Proposal) DistribDution..umees oo 27
2.7 Tests for Convergence e eSS A0 28
2.8 Introduction to Gibbs SEQUENCE...mmmmmmmmmm st SR—— 29
2.8.1 Hlustrating the Gibbs SAMPIET ..crumrcreesammsmsenssessmeessssersesssenaes i / ................... 30
2.8.2 Extracting Information from Gibbs Sequence....».......,.,.............;i ..................... 31
2.8.3 Sampling the Gibbs SEqUENCE .uenermrseismesmsssserns e 32
2.8.4 Efficiency of the Gibbs SAMPIET sornrrrseersssmmmscsssesemsmmssssmsssssssssssesssessssssssessssess 32
2.8.5 The Variance of a Gibbs Sampler Based Estimate.....commmmmeomimiomimmn 33
2.8.6 Convergence Diagnostics of the Gibbs Sampler .. 33

~ 2.9 Gibbs Sampler for Bayesian Calculations s, 33
2.9.1 Constrained Parameter ModelS i o 34
* 2.9.2 Hierarchical Moaels ...................... e ———————— s 35

} - '—2.9.3~Gibbs éam}plef and Incompl;te Dafa P;oblems ......... ” 35_
2.9.4 Missing Data..ecnnineenni e s e 36
Conchusion 2: .. rneecrnessnens e R e SRR 36

— Chapter 3: Bayesian Modeling of Outstanding Liabilities.......cccvuiininnrennn. 38
3.1 Introduction uveumsmsssarsasscenss P OO 39
3.2 Bayesian Modeling via MCMUC ..., 41
3.3 Modeling APProaches ..o 42
3.3.1 Model 1: Log-Normal Model..uummmmmommmsmmsissom s 42




3.3.2 Model 2: Log-Normal and Multivariate Model .o 47
3.3.3 Model 3: State Space Modeling of Claim Amounts ..o 53

3.3.4 Model 4: State Space Modeling of Average Claim Amount per Accident.61

ConcluSION 3: i 64
Chapter 4: The Implementation in Win-BUGS ..................................................... 65
4.1 INETOAUCHON certvrinsceemsr st senmssss s eassssessss s iss s bbbt Eb s s st 66/
4.2 Getting Started with WInBUGS ... 67
4.2.1 Writing, Checking and Compiling the Model .uvmummmmmmsmmmmee 68
4.2.2 Running the Model and Monitoring the QUput s 69
4.2.3 Monitoring and Assessing CONVEIZENCE e 70
4.3 Modeling some Disc;rete Distributions in WinBUGS......ccemeemmnrnn S— 72
. 4.4 Implementing Four Models Using WinBUGS ... 81
CONCHISION 4. s s st e s s s s s e EE 91
COoRCISION s 92
Appendix I..: ........................ 8 81 RS R '93
Appéndixil ......................................... .................................................................. ~ ....... 9 5
Appendix HL....ccommmmnm ................................................... 99
L T — 105

VII




| Abstract

The aim of this thesis is to describe some aspect of insurance issues from the
Bayesian point of view. We use advanced computational techniques to
estimate posterior models among different distributions for claim counts and
also various models for both claim amounts and counts. We construct a
flexible kind of Markov Chain Monte Carlo methods, Gibbs Sampler, and

implement it in various illustrated examples.

Key Words: Bayesian Theory, Bayesian Approach, MCMC (Markby Chain
7 Monte Carlo) Me_thods,, Noninformative Prior Distribution. Gib_bs Sampler,
WinBUGS.




Preface

Bayesian inference is a useful and important device because of combining the
prior distributions of the parameters and the likelihood functions of the data
in evaluating the posterior distributions of parameters. Then mostly, it will
give us more precise and comprehensive results. In chapter 1, principles of
the Bayesian inference will be introduced. Nevertheless, there are many
obstacles in getting posterior distributions in statistical problems, especially
when noninfomative prior distributions for parameters are used. So the use of
MCMC methods particularly, Gibbs sampling can be beneficial. This subject
will be investigated in cha;)ter 2.

In chapter 3, four models for claim amounts and counts in insurance will be
explained. Applying these models and other similar models in the field of
insurance is a case that has been paid attention in recent years. Implementing
these models-has been done by WinBUGS software. It is a kind of software
that have many applications in the Bayesian inference and can be
downloaded freely on the world wide web.

In c@apter#, all the expléinéd models in c}iaptér 3 will get im{nlenge;nted in
WinBUGS and some statistics and plots will be presented. Also three
statistical distributions; Negative Binomial, Generalized Poisson and Zero
Inflated Poisson, in the begging of the chapter are implemented in
WinBUGS. All the data are collected from two private and governmental
insurance companies (requested not to reveal their names). Rumina (2006)
worked on Models 2 and 4 to be described in chapters 3 and 4, theoretically
and practically, respectively. She considered missing data and tried to
estimate claim amounts and counts for them. The procedure in the presented

thesis is different. Here, the parameters of the models and their history plots
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are estimated and shown, respectively, also residuals for Models 1 and 3 are
found. Programming codes especially for models 2 and 4, prior distributions,
the proofs for finding the posterior distributions of the models’ parameters

are different. We wish, the presented thesis would be useful and beneficial.
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Chapter 1: The Bayesian Methods

1.1 Introduction '

The representation of uncertainty about parameters or hypotheses as
probabilities is central to the Bayesian inference. Under this framework, we
can calculate probability that a parameter lies in a given interval or the
probability of a hypothesis about a para{meter or set of parameters. Let P(H,)
denote our prior beliefs about the truth of a hypothesis, Hy for example that
the excess relative risk of thrombosis for women taking the pill exceeds 2,
with A7 being that the relative risk was under 2. Suppose our actual data at
~ hand Show a relative risk of 3.6. Then the probability or the likelihood
function of the data x, given our prior belief is the conditional probability

P(x|H), with H denoting Hp for simplicity. Bayes theorein expresses the

P(x|H)P(H)

updated probability statement about A as P(H|x) = e where P(x) is

the probability of the data averaged over all possible hypotheses.

Here P(x) would be the probability or the marginal distributions of the data
over Hp and H;, namely P(x|Hy)P(H,) + P(x|H,)P(H)follows from the
rule for . the joint probability of x and H, P(x,H) = P(x|H)P(H) =
P{H|x)P(x) and the probability P(H|x) denotes our updated or posterior
probability beliefs about A, given the data. In a sense it pools the prior beliefs
with the evidence at hand. We view the model or parameters /A as random,
and since the divisor P(x) is independent of /, We can re-express the result

as P(H|x) < P(x|H)P(H).[1]




1.2 The Bayesian Paradigm

In this part we explain Bayesian paradigm more mathematically. In the
Bayesian paradigm, one of the interest is a quantity & where its value is
unknown. What is known is a probability distribution 7(6) that expresses our
current relative opinion as to the likelihood that various possible values of 6
are the true value.

The second item is the probability distribution f(x|#). It describes the
relative likelihood of various Valugé of X being obtained when the
experiment 1S conducted, given that & happens to be the true parameter value.
This is called the model distribution and is the one element that is common to

both Bayesian and classical analysis.

f(x|6)m(6)

The next step is to use Bayes theorem to compute, 7*(6]x) = Troomeas >

a posterior distribution of 8. We represent our opinion after running the
experiment and getting new results. Now, the final step is to use the posterior -
density to draw some conclusions which are available for the problem at
hand. We will consider 3 items;

1- THe first is a point estirhate of one of the parameters in the vector .

We have @ = (4,, ... ,0y)' and the posterior distribution of g is

T[*(gi!X) = fn*(@i, ...,Gk‘JC) d91, ey dHi_ldBinHk

2- Secondly, the Bayesian Central Limit Theorem indicates that under
suitable conditions the posterior density can be approximated by the

normal distribution and so the confidence interval is approximately

E(6;|x) £ Z1~§*/ var(6;]x)

The approximation improves as the number of observations increases.

6
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3- Finally, of greater interest is the value of a future observatior.. Suppose
the density of this observation is g(y|@). It is not necessary that this
density matches to the model produced the observation x, but it must
depend on the same parameter € The predictive density is then
F*lx) = [ g(v|0)m*(6]x)d6 ,and it represents all of our knowledge

about a future observation.[6]

S e

1.3 The Prior Distribution and the Likelihood Function
In words the full result is that;

likelihood Functionsprior distribution
Y.(likelihood*prior)

Posterior distribution =

where the denominator is a fixed normalizing factor which ensures that the
posterior probabilities sum to 1. So,

Posterior Distribution < Likelihood Functionx Prior Distribution

This expression simply states the common-sense principle, the updated
knowledge combines prior knowledge with the data at hand. The relative
influence of the prior and the data at hand on the updated beliefs depends on
how much weight we give to the"prio.r (how “informativé” we make it) and
the strength of the data. For example a large data sample would tend to have
a predominant influence on our updated beliefs unless our prior was
extremely specific.

If our sample example was small and combined with a prior which was
informative the prior distribution would have a relatively greater influence on

the updated belief.




1.4 The Sampling Perspective: Estimation

The modem approach to Bayesian estimation has become closely linked to
sampling-based simulation methods. Traditional classical estimation methods
are involved to find a single optimum estimate, such as the maximum
likelihood estimate. This is equivalent to find the mode of likelihood.

The sampling perspective used in Bayesian estimation instead focuses on
estimating the entire density or distribution of the parameter. This density
estimation is based on a long run of samples from the posterior density. The
samples are of parameters themselves, or of function of parameters. Sampling
is continued until the stationary distribution is equivalent to the posterior
¥ (8]x).

If there are n observation and p parameters, then the required number of

iterations T from a single sampling chain to reach stationary is typically
considerably larger than the size of the sample of observations. It will tend to
increase with_both p and n, and also the complexity of the model.

A variety of Markov chain Monte Carlo (MCMC) methods have been
proposed to sample from posterior densities. There are essentially ways of
extending the range of single parameter sampling methods to multivariate
situatgons, where each parameters or subset of parameters in the };—osterior
density may have different densities.

One form of MCMC methods, called Gibbs sampling, samples in turn from
each parameter & in the posterior density, while regarding all other
parameters as fixed. This sampling method is the main basis of the BUGS

program. In the next chapters, we will expand this subject completely.[1]




1.5 Prediction from Sampling

In classical statistics the prediction of out-of-sample data z often concludes
values calculating moments or probabilities from the assumed likelihood for
y evaluated at the selected point estimate 8,,, namely p(y|6,,).

In the Bayesian method, the information about & is not constrained in a
single point estimate but in the posterior density p(@{y)and so prediction is
corresponded based on averaging p(y|8)over this posterior density. If the
sampling approach is used then the information about @ is contained in a
long-run of sampled values from this posterior density. So the prediction of
out-of-sample data z given the observed data y is, for @discrete, the sum

p(zly) =9 p(z]H)p(Gly) and is an integral over the product p(z|8)p(8ly)

when #1is continuous.

1.6 Categorical Data Models: Binomial and Poisson Distributions

With categorical rather than continuous data, the major base-line distributions
are binomial and Poisson. Categorical data occur when data is only available
as recorded in discrete categories. Often originally continuous data may be

converted to a discrete categorization.

1.6.1 Binomial Outcomes

With binomial data there is a single parameter of interest, the probability of
certain outcome 7. The data mechanism distinguishes two possible outcomes
as “Success” and “failure”, and with probabilities 7 and 1 — 7, réspectively.
~ The two outcomes of a binomial trial are mutually exclusive and exhaustive.
Thus the binomial describes the distribution of x success out of n trials. The
binomial density is proportional to the product of probability 7 over the x

success, and of 1 — 7 over the n — x failure. Thus, we can write;
9




p(xln) «x t*(1 —m)™™* and  x~bin(n,x)

The parameter of interest is the probability 7z, with the x success and n — x
failures being the data. One way to represent the size of x is, assigning
probabilities to a small number of possible alternative values. But 7 can have
an infinity of values between 0 and 1, and so its prior may also be represented
by a continuous density.

For reasons of conjugacy, a convenient prior density for the binomial
probability is the beta density with parameters a and b (both positive),
denoted beta(a, b) such that; p(r) x % (1 — m)?~2. The posterior densit&
of m is then also a beta with parameters @ + x and b + n — x specifically:
p(rlx,n) o w*+*1(1 — m)P*"=*~1 So the parameters of the beta prior
density state a successes and b failures. In a beta density with parameters o

and B the mean is the ratio w = ﬁ—ﬁ of total “successes” to total “events”.

mQ@-m)

The variance is var(n) = (a+B+1)

. Accordingly, oo+ B+ 1=a+b+n+1and

so a+ P+ 1 is sometimes called the extended sample size. For a and  both
larger than 10 the beta den31ty is apprommated by a normal curve. For

relatively small o and B the apprommatlon is better for 7 closer to 0. 5

1.6.2 Poisson Distribution for Event Counts

The typical application of the binomial distribution is to take a sample of a
given size and count the number of sample members characterized by a
certain attribute or not. There are circumstances, when the number of times
an event occurs can be counted without there being any notion of counting
when the event did not occur, there are also many instances when there is a
converse event but if the event is rare then there may be a choice between a
binomial or Poisson model:

10
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The greater the rarity of the event, the more appropriate the Poisson becomes.
Often the number of events can be seen against an exposure a certain extent
(e.g. a population, a geographic area, etc.). For example, other things equal.
we would expect the number of new cases of a rare infection to be greater for
a large population.
We would have observed x events for a mean A which is the product of an
underlying rate z and an exposure E, such that A = pF. Usually E is assumed
known. (i.e. a fixed constant). Then we conclude that x~Poisson(1). So
x~Poisson(uE), where A = pE, with zto be estimated.
Hence the likelihood of x events can be seen to be proportional to e *1*. At
a known exposure level, with A = pE, then this is in turn proportional to
e HEyu* since E*is a constant. If we observe events Xy, Xy, X3, ..., X for a
sa;ﬁple of size k then the likelihood over the sample will be proportional to
e *)T where T =YX, x; = kX.
If we observe events Xxy,X,X3,..,X; corresponding to fixed exposures
E,E,, .., E, and we denote & = ),; E; as the total exposure in the sample,
then the likelihood is propor’uonal to e ul
If we adopt a gamma G(a, b) for A, such that p(1) o A%~1eb4 then the
posterior density for A will be of a gamma form G(a+T,b + ¢). If we
assume a G(a, b) prior for p, then the posterior density for p will be of the
form G(a+T,b + &).
Totally, if one wishes to estimate a probability of survival, classical
statisticians would consider it legitimate to use prior experience and
information to form the opinion that for example a binomial or Poisson
model is appropriate for the experiment but that it is illegitimate to use prior

experience and information to form a prior opinion about the probability of
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survival. This is the dictum regardless of the size of the experiment relative to
the previous experience and information. Bayesian statistics goes two steps
beyond this classical dictum in that it holds that it is not only legitimate to
form an opinion based upon the prior information and experience, but
mandatory to do so. The Bayesian statistician views the experimental data as
evidence to be assimilated into the experience and knowledge of the

experimenter.{1] /

1.7 Analysis Through the Bayesian Approach _
Suppose that an insurance company had decided to issue a new policy but
hesitates to put it into issue to the market because sales volume (fI) per sales
policyholders may not be sufficient to cover the cost. Management therefore
decides to carry out some research by taking a sample of potential
policyholders. The final decision whether or not to go into issue will turn
primarily on the evidence obtained from this sample, but will also incorporate
any adaitiOnal prior evidence of sales volume that was obtained on the basis

. of marketing judgment.

Suppose that the executive making the decision puts the latter information in

the from of a probability distribution of guesses, say Normal with mean s,
and standard deviation oy. The sample is now taken and it is assumed that it
is wished to revise the distribution of # to take into account of the new
evidence from the sample, which may be that the sample mean
' is assumed Normal with mean [ and standard deviation oy. Then, using
Beyes’s theorem, the posterior distribution of fI will be:
= a2~
exp (_%{(x 01#> _{_‘(ﬂ JOHO)})

27[0001

g =




2mag01 fedz

Ho /02 +% /U 5
0 1
o 05_7‘ +J'cc7§ . '

And hence p(fi|%) is Normal with mean =

2.2

A . On T
and standard deviation = /——F" L
o'0+0'1

Notice that the posterior mean is a weighted average of the prior mean and
the sample mean, the weights being the reciprocals of the variances of the
two distributions. -

- Now, suppose that; yy = 18, o2 = 3.0 and that a random sample of 100 -

from an estimated population of 20000 gives ¥ = 15,5 =12and o0, =

12
V100

Thus the posterior distribution of /i is Normal with parameters

mean = (18/3.0)2"“(15/1.222
(M3.0) +(H12)

2 2
and standard deviation = /M)— =1.113
- (3.0)%2+(1.2)2

the striking thing about this example is the fact that the evidence supplied by

= 1.2

= 15.4.“

the sample has virtually overwhelmed the executive’s original beliefs about
the sales of the new product. /r

1.8 The Effect of the Prior Distribution

Now, it is worth considering whether the shaped assumed for the prior
distribution is a critical factor. So, two extremely contrasting prior
distributions are considered, namely:

a) Normal, mean 1 and standard derivation 1,

I3




