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ABSTRACT:

Copolymers of isobutyl methacrylate (i-BMA), and lauryl methacrylate (LMA), were prepared by
bulk and solution free radical polymerization. Synthesis of these copolymers was investigated over
a wide composition range both at low and high conversion levels. The monomer reactivity ratios as
well as 95% confidence intervals were calculated by “ordinary least square” (OLS), “generalized
least square” (GLS), NLLS and monte carlo (MC) methods. “Bootstrap” and “Preferential
adsorption models” which explain anomalous behavior in free-radical copolymerization, was also
presented. Maximum likelihood function with error-in-variable model (EVM), was used to estimate
the initiator decomposition and coupled propagation-termination rate constants. A two-step
procedure based on Marquardt and Interval Newton/Bisection algorithm was used to estimate the
individual rate parameters. This technique was used, with mathematical and computational
guarantees of certainty, to find the global optimum. Statistical analysis indicates that although
copolymer composition is well described by terminal unit model, but rate data are well represented
by the “Implicit Penultimate Unit Effect” model of Fukuda and co-workers. The kinetic and
thermodynamic parameters of initiation, overall reaction and thermal degradation of copolymer was
also determined using TGA/DTGA and DSC data. The model-free and model-fitting kinetic
approaches were applied to these data for retrieval of kinetic parameters. Finally a systematic, full
conversion range study of copolymerization is being conducted in solution. The polymers produced
were characterized for conversion, copolymer composition and molecular weight distribution. The
experimental trails were of the two—level factorial type and were designed optimally using a D-
optimal criteria. This design procedure with two levels of temperature, initiator concentration, chain
transfer agent concentration, monomer feed composition and agitator rotational speed led to the
identification of significant effects and interactions on cumulative cofoolymer composition,

molecular eight distribution, batch time and the onset of gelation.

KEY WORDS: Methacrylates, Kinetics, Reactivity Ratios, Monte Carlo, Thermal Analysis, D-optimal
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CHAPTER 1 SCOPE AND OUTLINE OF THE THESIS

SCOPE AND OUTLINE OF THIS THESIS

SYNOPSIS. This chapter starts with a general introduction to the work described in this
thesis, followed by some general theory concerning free radical copolymerization
kinetics. The concept of intramolecular composition drift is discussed and the
investigated lines of research are validated. Hereafter, the outline of the thesis is given

in detail. Finally, the remainder of this thesis is outlined.

1.1 INTRODUCTION

The growing interest in multicomponent polymerizations from both industry and
academia has uncovered the need for a more systematic approach to the study of such
systems. The systematic accumulation of reliable kinetic data will be useful for the
purposes of parameters estimation, thus aiding further the modeling efforts. Also a good
working knowledge of the mechanism and an appreciation of the effects the process
variables on the properties of interest are required for optimization and control of
polymerization process. The approach which utilized in this work, consist of using
experimental kinetics and mathematical modeling to examine all levels of

multicomponent polymerization.

1.1.1 Free-Radical Polymerization

One of the most convenient ways to produce polymeric material on an industrial scale is
through free-radical polymerization'. It allows the synthesis of a wide gamut of
homopolymers, while at the same time virtually any combination of monomers can be
employed to produce copolymers. Moreover, the technique is relatively insensitive
towards all kinds of impurities, notably water, and only requires the absence of

oxygen. Free-radical polymerization comprises essentially three distinguishable
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features; initiation, propagation and termination’. The general scheme for free-radical

homopolymerization is depicted in the following scheme:

Generally, in the initiation step a primary radical is formed by dissociation of an
initiator, usually a peroxide or an azo-compound. This primary radical can react with
monomer to yield a carbon-centered radical. The carbon-centered radical can now add
monomer until it undergoes bimolecular termination, which can occur either by
combination or by disproportionation. It should be noted that growing polymeric
radicals can also be terminated by transfer reactions with a transfer agent, solvent or
even a polymeric chain. In this case, the radical will be transferred from the growing
polymeric radical to the transfer agent, which, in turn, can re-initiate
polymerization. Two features characterize the conventional free-radical polymerization
system.

First, chains grow very fast and the average lifetime of the growing radical chains is in
the order of only a second or even less (0.1-1 s).

Second, the addition of monomer to the polymeric radical most often occurs without
any selectivity, i.e. stereoregular incorporation of monomer is only claimed in special

cases.
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Because the microscopic polymer properties, such as chemical composition distribution,
molecular-weight distribution and tacticity, are key parameters that determine the
macroscopic behavior of the polymer, the control of these parameters is essential. The
absence of control of the incorporation of monomer into the polymeric chain implies
that many macroscopic properties cannot be influenced to a large extent.

It is evident that the characteristics of the polymeric chain are determined by all
fundamental reaction steps in the polymerization process. Since transfer and termination
events only account for a very small part of the polymeric chain, the kinetic behavior of
free-radical polymerization in this work will be focused mainly on the initiation and

propagation steps.

1.1.2 Free Radical Copolymerization

The situation becomes slightly more complicated when two different monomers are
copolymerized. In this case, two monomers participate in the propagation steps and, as a
result, polymeric radicals with different chain ends exist. In general, these radicals will
not exhibit the same affinities towards both monomer species. In addition, interactions
between monomer and solvent, monomer and copolymer, monomer and growing
polymeric radicals and even between both monomers may exist. These interactions
affect the intrinsic reactivities of the radicals and, therefore, have a strong influence on
the composition of the resulting copolymer and its macroscopic properties. In order to
describe the copolymerization and to explain copolymer compositions, sequence
distributions and average propagation rate coefficients, several models have been
proposed. The simplest one is the terminal unit model> that disregards any of the

physical interactions stated above and, beside the two monomer species, only takes into
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account two growing radicals with different monomer units at their chain ends. The

terminal unit model (TUM) thus considers the following four propagation reactions:

where P and O’ represents the growing polymer chain with A/; and M, monomer linked
to a primary radical of initiator. The expressions derived from the TUM may give only
a qualitative description and do not quantitatively describe the experimentally
observed data very well. In these cases more complicated models, such as the

1*°or monomer complex participation model® sould be

penultimate  unit mode
considered to derive the corresponding expressions. Obviously, a better description of
the system is gained, but additional parameters need to be introduced. Copolymerization

models have been extensively discussed in many literature reviews'”.

1.1.2.1 Chemical Composition Distribution: Intramolecular Composition Drift

The chemical composition distribution is a result of the different reactivities of the
monomers in the polymerization process, the different sequence of incorporation into
the polymer chain, and different chain termination reactions. The determination of the
microstructure of copolymers (monomer sequencing and tacticity in the polymer chain)
is important in obtaining more detailed information on the different macromolecules. It
gives information on the mechanism of the polymerization reaction and helps to
establish structure-property relationships. The way both monomers are distributed in a

copolymer determines in great part its physical properties. Two copolymers can have




