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ABSTRACT

INTERPOLATING BLASCHKE PRODUCTS

BY

MOJTABA GHIRATI

As it has shown by Forstman, [5], Blaschke products are norm dense
in the set of inner functions. Later, [8), Marshall showed that H™ is
the closure of lineap span of the set of all Blaschke products. After this
the same question about interpolating Blaschke products raised in [6] by
Garnett. The problem had reminded open for about 15 years and at last
answered by Garnett, [7].

In this thesis we will review this story from Fortsman to Garnett and

from [5] to [7]!
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Chapter 1

Introduction

In this chapter we will review some important theorems and basic defini-

tions thal will be used in the next two chapters.
Schwarz’s Lemma

Let B denote the set of analytic functions from D into D. The simple

but surprisingly powerful Schwarz lemma is this:

Lemma 1.1. Let f(z) be analytic on a disc B(0,R,) and suppose that
[£(2)| < Ra on B(0,R,) and f(0) = 0. Then

R
F@) < Zlal for |2l < B (1)
Strict incquality holds in (1) for every z # 0 unless f is of the form
f(z) = ﬁn—e""z for some real a.
R,
Proof. See [6]. . 0

Lemma 1.2. Let f € B, then

|f(Z2__—__J:('zo)| <| Z— %
[1— flz0)f(2)] ~ 1 — %%

|, 2 # 2,

and

F@l
T [/@F S T @

Equality holds at some point z iff f(z) is a Mobius transformation.

(A mobius transformation is any function of the form T(z) = e¥((z —

%)/(1 - %z)).)




Proof. See [6]. O

The pseudohyperbolic distance on D is defined by

zZ—w
p(z7w)=|1 z

]
Lemma 1.2 says that analytic mappings from D to D are Lipschitz con-

tinuous in the pseudohyperbolic distance:

p(f(2), f(w)) < p(z, w).

The lemma also says that the distance p(z, w) is invariant under Mobius
transformations:

p(z,w) = p(T'(2), T(w))-

We write K (20, ) for the non-Euclidean disc
K(ZO,T) = {Z l P(Z,Zo) < T}, 0<r<l

Since thc family B s invariant under Mobius transformations, the study
of the restrictions to K(zo,r) of functions in B is the same as the study
of their restrictions to K(0,r) = {u) | |w|'< r}. In such a study, however,
we must give K(zg,r) the conformal coordinate function w = T(z) =

(2 — 20)/ (1 — Zy2). For example, the expression

(1= [N @)

is confuiinally invariant. The proof of this fact uses the important identity

2=z (1—[2)A = |al’) _ 2
jnll—'z;zl._ Il__-z-azlg —(1—|Z| )lT(Z)I,

which is (2) with equality for f (z) = T(z). Hence if f(z) = g(T'(2)) =
g(w), then
1@ - [2) = g @)IT' (2|1 — [2*) = g’ ()] (X = wl?)
2




and this is what is meant by invariance of (3).
The non-Euclidean disc K(#,7),0 < r < 1, is the inverse image of
the disc jw| < r under

Z— 2y
1-Zz

w=T(z) =

Consequently K (zy,7) is also a euclidean disc B(c, R) and as such it has

center
I
c= 1— TQIZOPZO
and radius
1-— 2
R |2l
T

The pseudohyperbolic distance is a metric on D. The triangle inequality
for p follows from
Lemma 1.3. For any three points z),24,23 in D,

p(z0, 23) + p(23, 21)
1+ p(20, z2)p(22,21)"

p(20, ) — p(23, 21)
1~ p(20, z3) p(22, 21) ~

Proof. See [6]. S : O

< p(z,2) <

Every Mobius transformation w(z) sending 2 to wp can be written as

w— Wy i Z—2

1 — Wow 1-7Z2

Differentiation then gives

l'wol2

|w (ZD)I = |Z lz (4)

This identity we have already encountered as (2) with equality. By (4)

the expression

2|d4|

(6)




is a coufurmal invariant of the disc. We can use (5) to define the hyper-

bolic length of a rectifiable arc y in D as

[ 2
. 1—|2*
We can then define the Poincare metric (21, 23) as the infimum of the
hyperbolic lengths of the arcs in D joining z; to 23. The distance (21, 22)

is then conformally invariant. If 2, = 0,23 = r > 0, it is not difficult to

see that

" dz 1+r
P(21,23) = 2 A ———1_|$|2—log1_r.

Since any pair of points 2, and 22 can be mapped to 0 and

zﬁ_zl.l
1-Zizm

p(zla z2) = I

respectively, by a Mobius transformation, we therefore have

1 + P(ZI, z?)
,73) = log —— 2202
vlenm) =loe 1 )
A calculation then gives
tanh(y/(2, %
P(ZI,ZZ) — ("1’2( 1 2))

Moreover because the shortest path from 0 to r is the radius, the geodesics,
or paths of shortest distance, in the Poincare metric consist of the images
the diameter under all Mubius transformations. These are the diameters
of D and the circular arcs in D orthogonal to 8D. I there arcs are called
lines, we have a model of hyperbolic geometry of Lobachevsky.

Hyperbolic geometry is somewhat simpler in the upper half plane
H={z=z+iy|y >0}

In H,

AL %2
plz1,22) = lz1 _-z.;l

4




and the element of the hyperbolic arc length is
ds = 'iz_l.
Y
Geodesics are vertical lines and circles orthogonal to the real axis. In H

any two squares
{(z,9) | 7o <z < z9 + h,h <y < 2h}

are congruent in the non-Euclidean geometry. The corresponding congru-
ent ﬁgures in D are more complicated. For there and for other reasons,

‘H if often more convenient domain for many problems.
Harmonic Functions

Given an open and connected plane set £ and a function u: Q2 — R we
rise the question: Under what conditions is u the real part of an analytic
function f: Q@ — C?

For such a function f = u + iv to exist it is necessary that u belong
to the class C*(D). Furthermore, in the light of the Cauchy-Reimann
relations the existence of f impose another significant constraint on u:

Uz + Uyy = 0 throughout (2. Indeed, we have
Ugg + Uy = (Uz)e + (uy)y = (v)e + (~2)y = 0.

The partial differential equation u,, + vy, = 0 is known as Laplace’s
equation. We use the symbol Au as an abbreviation for u,; + u,,. thus
the Laplace equation is frequently written in the form Au = 0. The

solutions of this equation are called harmonic functions.

Deflnition 1.1. Let Q be a nonempty open subset of C.
1) Let [ € L}oc(ﬂ) (locally integrable function in 2). For every closed

5




disc B(z,r) C Q, we call area averuge of [ over B(z,r), and denote it
A(f, z,7), the complez number given by

1

A(f,z, 1) = —
( , ) wrl B(sr)

fdm,

where din represent the Lebesgue measure in C.

2) Let [: 92— Cz € Q,r >0 be such that B(z,7) C Q and

f|88(z.r) € Ll'

We denote A(f, z,7) the circular average of [ over 8B(z,r) by the complez

number given by

Af,z,r) = g;/ohf(z + re')do.

Proposition 1.1. Let £ be o nonempty open subset of C. then the fol-
lowing statements are equivalent for any f: Q — C.

1) C*()) and f(z) = M(f, 2,7) for every B(z,r) C Q.

2) C*(Q1) and f(z) = A(f, =, r)far every B(z,r) C Q.

8) f € L}, (Q) and f(z) = A(f,,7) for every B(z,r) Q.

Proof. See [1]. | ' O

In the case that f satisfies émy of these properties, we say that it is a
Harmonic function in §.

Suppose u : {2 — R is harmonic, does there exists a harmonic func-
tion v : Q —> R such that the function f = u+ v is analytic in 2? Any
function v that fits this description is termed a Conjugate harmonic

function for u in .

Proposition 1.2. Let Q2 be a simply connecled open set in the complez
plane. Then every real valued harmonic function is §) possess a harmonic

conjugate.




Proof. See [1]. 0O
Subharmonic Func_tions

Definition 1.2. Let X be a topological space. A function u : X —
[—00,00) is said to be upper semi-continuous (usc) if the following hold:

To every 7o € X and M > u(x,) there exists a neighborhood U
of 7o such that M > u(z) for allz € U.

Remark 1.1. In the case X C C and open, the above definition is equiv-
alent to
u(zp) > limsupu(z) for every % € X.

T—2Z0
By the following three lemmas we review some important properties of

use functions.

Lemma 1.4.

i) If u; and uy are usc then s0 are u, + ug and max{u,, us}.

i) If u is usc and ) € [0,00) then Au is usc.

i4i) If ua i3 usc fér each a in a non-emply indes set A then infaea Ua 18

also usc.

Lemma 1.5. An upper semi-continuous function on a compact topolog-

ical space altains its 3upremt'tm. In particular it is bounded above.

Lemma 1.6. Let u : Q@ — [—00,00) where  is an open subset of C.
Then u i3 usc iff there exist a -decreasing sequence 4y > Ug = --- of

continuous real valued functions on 0 such that

lim un(2) =u(z) for each z € .

n—ro0




Proof. The lemma is trivial in case u(z) = —oo for all z, so we will from
now assume that there exists a 2o € {2 such that u(z) € R

The if direction is true by part (iii) of the lemma above. So assume
from now on that u is usc.

We will first consider the special case of u being bounded from above,
say u(z) < M for all z € §). The trick is here to consider the functions

Uy, 1 € N given by
un(2) = sup(u(y) — nly — 2|) for z € Q.
yeQ

Uy, is linite valued, since M > u,(2) 2 u(zp) — nlzp — 2|.
We next prove that u, is continuous: Given z € £ and ¢ > 0 we

choose y € 2 such that
u.(2) <u(y) —nly—z| +e

Then for any 2z’ € 2 we have

Un(2) — tn(#) < (u(y) — nly — 2|+ €) — (u(y) — nly - Z|)
= n(|z' —y| - Iy'—z|)+e <nlz—2|+e¢

and since € > 0 is arbitrary we set that

Un(2) — un(d') < njz - 72|.
Interchanging z by 2’ we get'

|un(2) — un(2)| < nlz - 2]

proving the continuity.

Next note that

u(y) — nly — 2| 2 u(y) - (n+1)|y — 2|

8




which implies that u,, > 4. Since

ua(z) = sup(u(y) — nly — 2|) > u(z)
yeN

it is left to prove that

im_un(2) < u(2),
ie. if K > u(z) then uq(2) < K for sufficiently large n. For that we
use thal u is usc: There is a ball B(z,d) such that u(y) < K for all
y € B(z,48). Now,

Uq(2) = supen(u(y) —nly —2l)
= max{supyz<s(u(y) — nly — 2l), 5uPy g 24(u(v) — nly — 2|)}
< max{K,M —né) |
so if nn is large then u,(2) < K as desired.
We shall finally deal with the general case in which u is no longer

necessarily bounded from above. Choose an increasing homeomorphism
(b : [_OO, OO] — [_00’0];

(for example @(t) = ~exp(—t)). The function ¢ o u is usc and bounded
from above, so the construction in the special case above yields a sequence
(vn)n31 of continuous real valued functions with the property that va(z) 4
d(u(z)) as n — oo for all z € Q. It suffices to verify that —o0 < va(2) <
0 for all z € £, because we may then choose ug := ¢ o vp.

The left inequality is trivial. To settle the other inequality we use the

definition of v,, i.e.

vn(2) = sup(@(u(y)) — nly — 2]).

yen
By hypothesis u(z) < oo, so a := ¢(u(z)) < 0, and by the upper semi-

continuity of ¢ o u there exists § > 0 such that
d(u(y)) < g <0 forall y € B(z,9).

9




Thus

Un(2) = max{supy_;<s($(u(y)) — nly — z]), supyy55(¢(u(y)) — nly - z])}

IA

max{%, —nd} < 0.
a

Definition 1.3. Let §2 be a non-empty open and connected plane set. A
map u : {} — [—00,00) i3 said to be subharmonic in Q if
a) u i3 upper semi-continuous and not identically —oo.

b) For cach = € Q) there is a ball B(z, R;) C Q such that

x

u(2) < 51—- uw(z+re’)dd for all0 <r <R,.

Proposition 1.3. A function u which is subharmonic on Q, is locally

integrable in Q). In particular, the set
{z € Q| u(z) = o0}

i a null sel and u cannot be identically —00 on any non-emply open

subset of 1.
Proof. We first observe that u is integrable over B(a, R) if B(a,R) C Q
and u(a) > —oo:

Indeed, multiplying the ihequality

1 2% "
u(a) < o7 Jo u(a + re”)do

by nr and integrating from 0 to R = R, we get

R ,on
—00 < il«wR’u(a) < 2 / / u(a-+re)dbrdr = > / / u(z, y)dzdy.
2 2Jo Jo B(a,R)

As a consequence if u is not integrable at a then u must be identically
—oo throughout some neighborhood of a. Thus the complement in Q of
the set

{z € Q| u is locally integrable at 2z}
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