IN THE NAME OF GOD

STUDY OF NUCLEAR LEVEL DENSITY PARAMETER
AND ITS TEMPERATURE DEPENDENCE IN FINITE
NUCLEI

BY
MEHDI NASRI NASRABADI

THESIS
Submitted to the School of Graduate Studies is
Partial Fulfilment of the Requirement for the
Degree of Doctor of Philosophy(Ph.D)

IN
NUCLEAR PHYSICS
SHIRAZ UNIVERSITY
SHIRAZ, IRAN
Evaluated and Approved by the Thesis Committee As:
Excellent
QZ/}&/,/( /'.7.//..4..‘. A. Behkami, Prof. of Physics (Superviser)

Shiraz University

S. Sobhanian, Prof. of Physics.
Tabriz University

Shiraz University

\
A - CN
\kmwj&vm}« ....... A. Boshehri, Prof. of Chemsitry

Shiraz University

[ /C/ o G iy N. Ghahramanv, Associate Prof .of Physics
% ///76’,34, C/& e Shl U . .
e : raz Universitv

Feb. 2002




Dedicated

To

my parents,
my wife who bore hard during the course of my research

and

my children Fatemeh and Mohammad




ACKNOWLEDGMENT

[ would like ro express my sincere gratitude and appreciation 1o my cear
supervisor Professor Dr. A. N. Behkami for his help. guidance and en-
couragement during the course of my research. [ would like to thank
all my thesis committee members. Dr. Sobhanian. Dr. Eskandari. Dr.
Boushehri. Dr. Ghahramany and Dr. Ghatee for their help and construc-
tive suggestions in preparing this work. Finally I would like to thank all
faculty members of college of science particularly Physics Department

and Computer Center for their help.




ABSTRACT

Study of Nuclear Level Density Parameter

and its Temperature Dependence in Finite

Nuclel

Bv:

VMehdi Nasrl Nasrabadi

The level densities of even - odd and even - even isotopes 161162 1)y
186 L' r and 171172Y'h were calculated using microscopic theory of interact-
ing fermions and is compared with experiment. [t is found that. the data
can well reproduced with level density formulizim for nuclel with static
deformation. The nuclear temperature as well as the entropy of nuclear
svstem as a function of excitation energy has been extracted from the
BC'S theorv. It is shown that the entropy exhibits an S - formed shape as
a function of excitation energy. This is interpreted as a phase transition.
Procedure of treating the even - odd and even - even nuclear systems
has been presented and discussed. Also using an exactly solvable pairing
model Hamiltonian in BC'S theorv. we have analvzed the behaviour of
nuclear lecel density parameter and 1Ts femperature dependence in finite

nueler. Tt is found rhat this important quantity varies linearly with 1.
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Chapter 1

Introduction

The nuclear level density plays an important role in nuclear reactions
such as the formation of the compound nucleus and the ~ - decay rates
of highly excited nuclei {1]. Thus the most relevant quantity describing
the statistical nuclear properties is then the level density of the system.

Nuclear state densities have been the subject of investigation since
the early days of nuclear physics and have led to an enormous number
of experimental and theoretical papers. Reference to this work may be
found in several reviews. see for instance. [2. 3. 4]. It would rec.luire
a separate volume to summarize all the work have been done on this
subject. which is outside of our scope. so here we will simply give a short
account of the basic ingredients of the theory and will mainly discuss the
expressions 1hat are most {requently used in its calculation.

In what follows we make a clear distinction between state and level




densities. which will be indicated. respectivelv. by the fuctions « and
» ol primary quantities such as the number of neutrons and prorons (or
mote <imply rhe mass number. A). the excitation enerey. [, and the

spin. J. Each level of spin J comprises 2/ — 1 degenerate states with

different projection of ./ on the = — axzis. so the relation between state
and level density. considering that: " = E — Ejouna- 18
(AU =20+ Dpl AU T) (1.1)

The levels of a nucleus can be divided into two energy regions. namely
the low energy and high energy excitations. This division arises naturally
from the different approaches employed for their analysis: the spectro-
scopical approach for the low energy levels and the statistical approach
for high energy levels. The low lying nuclear excited levels are small in
number. well separated and rather simple in structure. For these levels
the spectroscopical approach is the most suitable and leads to information
concerning configurations. residual interaction and mixing.

The most outstanding feature of the total density of levels experi-
mentally measured is its extremely rapid increase with excitation energy
'5]. This is apparent in high-resolution experiments. where only at lowest
exciration energies it is possible to resolve the peaks corresponding o the
ransitions to “he discrere levels of the residual nuclens. At a few el

of excitation energy these peaks partly overlap and then merge into con-




sinuum. This extremelv rapid increase is characreristic of systems where
the excitation eneray is distributed among many degrees of freedom. as is
to be expected in rhe nuclear case when several nucleons may be excited
simultaneously.

The simplest expression for the nuclear level density has been ob-

tained in the fermi gas model by Bethe [5. 6. 7] and later modified by

_ As a zeroth order guess we assume that the distribution

Bloch [2. 3.9

J

of states or level density is given by Bloch formula

1 e

p(E) = mexp('Zv’aE) (1.2)

where a is the level density parameter, often expressed in terms of the
nuclear mass number 4 [10].

There are. however. a number of shortcoming in this approach. For
example. the lack of coupling to the collective part of nuclear spectrum
leads to an energy independent level density parameter. Recently. there
has been considerable theoretical activity in the determination of nuclear
many body density of states. taking into account shell. pairing, and de-
formation effects [11.12]. finite size effects [13], and thermal [14. 15] as
well as improvements in the determination of the spin cut off factors [161.

Furthermore. the multiple inverse Laplace transform used to deter-

mine the nuclear density of states from the Grand Cunonical partition

function of Fermi gas appeart to lead 1o certain inconsistencies in the fold-




ing of nuclear level densities 17, In spite of these deliciencies Blochrs
formula is widely used. particularly as a means of parameterizing the
experimentally derermined nuclear level densities 18], In the present
work we will demonstrate a simple means of extracting the nuclear level
density from the experimental information. based on BCS (J. Bardeen.
L. N. Cooper. J. R. Schrieffer) theory [19].

Anvway, since Bethe's first works on nuclear level density. many stud-
ies have been done for evaluation of this important quantity. But the fa-
miliar Bethe formula [3. 20] for the level density, because of its simplicity.
has been widely used to perform the statistical analysis of nuclear reac-
tions. This density formula takes a simple form due to (i): the connection
of grandcanonical partition function with microcanonical partition by a
saddle point approximation in the evaluation of the traces over the states
(21} and (ii): the grandcanonical partition function itself is approximated
using independent single particle spectrum which is further assumed to
be equidistant [22].

In summary. the work on nuclear level density started by Bethe and
exp&nded by widely using the partition function method. In its simplest
form named Fermi vas model the nucieus was represented as a gas of
noninteracting fermions confined ro rhe nuclear volume 205000 7. 23,
24, 25,26, 27. 28], More specificaily. the zeroth order expansion of this

model was used. which corresponds to rhe equidistant model fequally




spaced energy levelst. The equidistant model has been largely emploved
in data analvsis and is very popular even at present although it contains
lictle physical information.

A number of authors {29. 8] have presented a general procedure to
‘nclude the shell model in level density calculations. However, much
effort has been devoted to development of semiempirical approaches to
the problem. either by modifying the parameters of the equidistant model
formula [30. 31]. or by introducing a shell correction in terms of an energy
shift in ground state {32. 11]. A more fundamental attempt to understand
the effect of shell model degeneracies has been made with the Rosenzweig
degenerate model [33. 34]. In the same spirit, more sophisticated models
based on schematic single particle level sequences have also been studied
[35. 36, 37, 38, 39, 40. 41, 42]. However, such models lead to a relatively
poor fit to experimental data because of their strong dependence on the
choice of the single particle potential [43].

In an attempt to reproduce the experimental data. many modifica-
tions have been made to the original Bethe formula. considering the shell.
pairing and deformation effects. This led first to the simple thermody-
namic expressions which suggest an exponential dependence of the state

Jdensity on the excitation energy ['. namely

7 xexpll) T (1.3)

t




where T is the nuclear remperature [44]. then to the shifted Fermi gas
model and later to the popular back shifted Fermi gas model {11. 3]. The
constant remperature formula has been widely used to analvse the spectra
of particles emitted in statistical reactions and it reproduced the energy
dependence of the emitted particle yield to an accuracy comparable with
that obtained by use of more elaborate expressions of w(L').

A number of authors showed that a constant temperature expression
reproduces. at low energies. the experimental level densities better than
the Fermi gas model [11], and recent analyses confirm its adequacy up
to excitation energies around the neutron separation energy [45].

A more elaborate expression for the energy dependence of the state
density is provided by the equidistant spacing model ESM which assumes
that the one-particle states are equally spaced with spacing d. This model
of the nucleus is clearly not realistic in many respects, since it neglects
the residual interactions between the excited nucleons (so that the total
cnergy of the nucleus is simply obtained by adding the energies of the
constituent nucleons)and it gives highly degenerate excited states.

However. in a real nucleus the single particle states are split into a
number of components by the residual interactions, and this is described
bv rhe imaginary part of the optical potential at negative energies. This
fragmentation greatly increases the number of nuclear states. However,

although this is indeed the case, it is not of practical importance if one is




