
Diffractive Optics Applications in

Optical Micromanipulation

PhD Thesis

Ali-Reza Moradi

Supervisors: Professor Dan Cojoc

Professor M. Taghi Tavassoly

March 2009



Dedicated to

my family,

and to

the memory of the late Professor Galieno Denardo

ii



Abstract

This thesis describes the optical trapping and manipulation of arbitrary arrays of

microparticles in two and three dimensions as well as the arbitrarily shaped objects

based on the use of Diffractive Optical Elements (DOEs). A new method to design

the DOEs has been used in this work, which enables individual fine strength tuning

in each of the trap sites. This has allowed the dielectric particle assembly of three

dimensional structures and manipulation of red blood cells in desired and controlled

configurations.

The thesis is divided into three chapters: Diffractive Optical Elements, Optical

Manipulation, and Experimental Results.

Chapter 1 contains a review of the history and theory of diffraction and diffrac-

tive optics. Computer simulated examples are considered to illustrate the theory.

The predated main DOE design methods including the global optimization, the ray

tracing, and the iterative methods are described. A full description of the spheri-

cal wave propagation and superposition method on which most of the experimental

work is based will be presented. This chapter ends with an overview of the DOE

implementation techniques.

Chapter 2 introduces the technique of optical manipulation. A brief introduction

to the basic theory, the history, the basic setup for this purpose and an overview of

the applications are given. We explain the use of DOEs to generate multiple and

multi force arrays of optical traps as well as novel laser beams. The potential of

the technique will be argued for by introducing several examples pointing to special

applications. Finally, we will show the ability of the technique to manipulate red

blood cells in a spatially controlled environment.

Chapter 3 reports several experiments which demonstrate the capabilities of the

DOEs designed by spherical wave approach and projected onto the Spatial Light

iii



Modulator (SLM) for generating multiple and multi force dynamic arrays of inten-

sity spots and then optical trapping in such arrays. Details of the setup which is

developed to carry out these tasks and the steps to built the setup are explained in

the beginning of the chapter. The experimental results for the examples we inves-

tigate in chapter 2 computationally, will be presented to confirm the idea. These

results consist of beam shaping through experiments that use DOEs, multiple and

multi force trapping of microparticles in volume, and optical manipulation of red

blood cells. Finally, the results of real time manipulation of red blood cells will be

described. A graphical user interface for this stage is considered and will be intro-

duced. This interface helps the user to acquire the real time image of the trapping

plane and design the DOE for the desired configuration of the trapping points. The

results are achieved by inserting an extension to the first setup enabling simultaneous

viewing of the sample in two orthogonal observation planes.

Appendix A provides technical details on the SLMs and the specifications of the

available products on the market. Appendix B contains the trap stiffness measure-

ment methods.
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