

Diffractive Optics Applications in Optical Micromanipulation

PhD Thesis

Ali-Reza Moradi

Supervisors: Professor Dan Cojoc Professor M. Taghi Tavassoly

March 2009

Dedicated to **my family**,

and to

 $the \ memory \ of \ the \ late \ Professor \ Galieno \ Denardo$

Abstract

This thesis describes the optical trapping and manipulation of arbitrary arrays of microparticles in two and three dimensions as well as the arbitrarily shaped objects based on the use of Diffractive Optical Elements (DOEs). A new method to design the DOEs has been used in this work, which enables individual fine strength tuning in each of the trap sites. This has allowed the dielectric particle assembly of three dimensional structures and manipulation of red blood cells in desired and controlled configurations.

The thesis is divided into three chapters: Diffractive Optical Elements, Optical Manipulation, and Experimental Results.

Chapter 1 contains a review of the history and theory of diffraction and diffractive optics. Computer simulated examples are considered to illustrate the theory. The predated main DOE design methods including the global optimization, the ray tracing, and the iterative methods are described. A full description of the spherical wave propagation and superposition method on which most of the experimental work is based will be presented. This chapter ends with an overview of the DOE implementation techniques.

Chapter 2 introduces the technique of optical manipulation. A brief introduction to the basic theory, the history, the basic setup for this purpose and an overview of the applications are given. We explain the use of DOEs to generate multiple and multi force arrays of optical traps as well as novel laser beams. The potential of the technique will be argued for by introducing several examples pointing to special applications. Finally, we will show the ability of the technique to manipulate red blood cells in a spatially controlled environment.

Chapter 3 reports several experiments which demonstrate the capabilities of the DOEs designed by spherical wave approach and projected onto the Spatial Light

Modulator (SLM) for generating multiple and multi force dynamic arrays of intensity spots and then optical trapping in such arrays. Details of the setup which is developed to carry out these tasks and the steps to built the setup are explained in the beginning of the chapter. The experimental results for the examples we investigate in chapter 2 computationally, will be presented to confirm the idea. These results consist of beam shaping through experiments that use DOEs, multiple and multi force trapping of microparticles in volume, and optical manipulation of red blood cells. Finally, the results of real time manipulation of red blood cells will be described. A graphical user interface for this stage is considered and will be introduced. This interface helps the user to acquire the real time image of the trapping plane and design the DOE for the desired configuration of the trapping points. The results are achieved by inserting an extension to the first setup enabling simultaneous viewing of the sample in two orthogonal observation planes.

Appendix A provides technical details on the SLMs and the specifications of the available products on the market. Appendix B contains the trap stiffness measurement methods.

Acknowledgment

There are so many whose encouragement and support have made this work possible and to whom I owe gratitude. They are either in Iran or in Italy, the places I worked on my Ph.D. project.

First of all, I would like to thank my supervisors, Professor Dan Cojoc and Professor Mohammad Taghi Tavassoly, for their endless enthusiasm and ideas and for the opportunity they provided me to move forward in my research. I thank Professor Cojoc for introducing me to the fantastic fields of diffractive optics and optical manipulation. I have learnt a lot from him during my Ph.D. program. I have benefited endlessly from Professor Tavassoly's deep knowledge of optics, invaluable guidance and teaching experience that I was honored to be exposed to since the late 1990s, even before my Ph.D. research work.

My special thanks go to Professor Yousef Sobouti, the Founder and President of IASBS, whose intelligence, charisma, and vision helped many people at IASBS to study and work in an excellent environment and who taught me a great deal.

I partly dedicate this dissertation to the memory of the late Professor Galieno Denardo, the former leader of the optics and photonics program and the ICTP-IAEA STEP program at the Abdus Salam International Center for Theoretical Physics (ICTP). I have benefited immensely from his positive influence and helps during my Ph.D. I am very grateful to him for being an inspirational and very supportive coordinator from ICTP side of the STEP fellowship. I am also thankful to Professor Guiseppe Furlan, the head of the ICTP TRIL program for providing me an extra visit of the LILIT group to pursue further the project.

I am grateful to Dr Miltcho Danailov for motivating and encouraging me to study this project and for his very thorough support. I would like to thank Dr Enrico Ferrari for his endless friendship and assistance. I have enjoyed his company during my visits to Italy. I am also grateful to the Head of the English Language Section at IASBS, Mr Bahman Farnudi, for helping me improve my English during my M.Sc. and Ph.D. years. He is one of the nicest and most perceptive people I know; many IASBS students have benefited from his excellent knowledge of the English language over the years.

I must also express my gratitude to many other people including LILIT and laser lab group members past and present in Elettra, and the Optics Group members at IASBS. Working in the friendly atmosphere of LILIT has been a great experience and I would like to thank every single member there. I thank all my friends at IASBS for making me feel very happy during my M.Sc. and Ph.D. years. I cannot name them because there are simply too many of them.

My thanks also go to the staff of IASBS, the staff of Elettra synchrotron and on the other side of Trieste town to the staff of ICTP, for helping me with all of my administrative needs in a cheerful and friendly manner. They were always there to help. In particular, I would like to thank Ms Dorettea Calligaro, the secretary of the STEP program for her impressive assistance.

I would also like to thank the other members of the examination committee for reading this thesis. They have been helpful with their comments and suggestions. I would also like to thank other faculty members at IASBS who taught courses that were relevant to my Ph.D. research.

More personally, my very special thanks go to my dear family, my parents, my brothers and my sisters for their love, endless patience, encouragement and support. This thesis is also dedicated to them.

Zanjan Ali-Reza Moradi March 2009

Contents

uica	UOII		111
ostra	ct		\mathbf{v}
knov	wledgn	nent	vii
onten	its		ix
st of	Tables	5	x
st of	Figure	25	xx
Diff	ractive	e Optical Elements	1
1.1	Diffrac	etion	1
	1.1.1	Fraunhofer and Fresnel diffraction	7
	1.1.2	Free space propagation and FFT based algorithms	24
1.2	DOE o	lesign methods	36
	1.2.1	global optimization methods	42
	1.2.2	Ray tracing	45
	1.2.3	Iterative methods	46
1.3	DOE o	characteristics	58
	1.3.1	Degrees of freedom in design stage	58
	ostra eknov onter st of st of 1.1 1.2	extract extract extract ontents st of Tables st of Figure 1.1 Diffractive 1.1 Diffractive 1.1.1 1.1.2 1.2 DOE of 1.2.1 1.2.2 1.2.3 1.3 DOE of 1.3.1	eknowledgment ontents st of Tables st of Figures Diffractive Optical Elements 1.1 Diffraction 1.1 Freauhofer and Fresnel diffraction 1.1.2 Free space propagation and FFT based algorithms 1.2 DOE design methods 1.2.1 global optimization methods 1.2.2 Ray tracing 1.3 DOE characteristics 1.3 DOE characteristics

		1.3.2	Diffraction efficiency
		1.3.3	Root mean square error (RMS-E)
		1.3.4	signal-to-noise ratio (SNR) $\ldots \ldots \ldots$
	1.4	Result	s of IFTA method for DOE design 61
		1.4.1	Removing the Aliasing error
		1.4.2	Effect of de-centering the object
		1.4.3	Effect of the initial phase
		1.4.4	Effect of the quantization method
	1.5	Spheri	cal wave propagation and superposition method 71
	1.6	DOE :	\hat{C} abrication $\ldots \ldots .$
		1.6.1	Desktop DOE production techniques
		1.6.2	Diamond machine tools
		1.6.3	Dynamical devices
		1.6.4	Microlithographic fabrication technology
		1.6.5	LC Spatial light modulators
2	Opt	1.6.5 ical M	LC Spatial light modulators 90 anipulation 96
2	Opt 2.1	1.6.5 ical M Histor	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97
2	Opt 2.1	1.6.5 ical M Histor 2.1.1	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 99
2	Opt 2.1 2.2	1.6.5 iical M Histor 2.1.1 Optica	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 99 al trap characteristics 104
2	Opt 2.1 2.2	1.6.5 ical M Histor 2.1.1 Optica 2.2.1	LC Spatial light modulators 90 Ganipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 97 I trap characteristics 91 Trap efficiency 104
2	Opt 2.1 2.2	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2	LC Spatial light modulators 90 Ganipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 97 al trap characteristics 99 I trap characteristics 104 Trap efficiency 104 Trap stiffness 105
2	Opt 2.1 2.2 2.3	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 97 al trap characteristics 99 I trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106
2	Opt 2.1 2.2 2.3 2.4	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic Multip	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 97 al trap characteristics 99 I trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106 ole and multi force trapping 112
2	Opt 2.1 2.2 2.3 2.4	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic Multip 2.4.1	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 97 al trap characteristics 99 al trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106 ole and multi force trapping 113
2	Opt 2.1 2.2 2.3 2.4	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic Multip 2.4.1 2.4.2	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 99 al trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106 ole and multi force trapping 112 AOD use 113 DOE use 117
2	Opt 2.1 2.2 2.3 2.4 2.5	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic Multip 2.4.1 2.4.2 Non-G	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 99 al trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106 ole and multi force trapping 112 AOD use 113 DOE use 117 aussian laser beams in optical trapping 122
2	Opt 2.1 2.2 2.3 2.4 2.5	1.6.5 ical M Histor 2.1.1 Optica 2.2.1 2.2.2 Basic Multip 2.4.1 2.4.2 Non-C 2.5.1	LC Spatial light modulators 90 anipulation 96 y and basics of optical trapping 97 Geometrical optics, Mie and Rayleigh regimes 99 al trap characteristics 104 Trap efficiency 104 Trap stiffness 105 optical tweezers setup 106 ole and multi force trapping 112 AOD use 113 DOE use 117 acussian laser beams in optical trapping 122 LG beams 123

3	\mathbf{Exp}	erime	ntal results	130
	3.1	Exper	imental setup \ldots	131
	3.2	Beam	shaping	139
		3.2.1	Planar 3×3 array of intensity spots $\ldots \ldots \ldots \ldots \ldots \ldots$	139
		3.2.2	Planar 3×3 array of intensity spots - dynamic intensity control	l 139
		3.2.3	Planar circular array of intensity spots - dynamic intensity	
			control	140
		3.2.4	2×2 array of spots disposed in volume with different intensities	s143
		3.2.5	"IASBS", and the logo of IASBS	143
		3.2.6	Shaped beams to move RBC in vertical direction	146
		3.2.7	Shaped beams to tilt RBC in different sides	146
		3.2.8	Shaped beams to shift RBC in XY plane	149
	3.3	Optica	al trapping	149
		3.3.1	Multiple trapping	149
		3.3.2	Multi-force trapping	152
		3.3.3	RBC manipulation	156
		3.3.4	Real time manipulation using graphical user interface (GUI) $% {\mathbb{C}} = {\mathbb$	164
\mathbf{A}	LC-	SLM 1	producers	172
в	Met	thods t	to measure trap stiffness	185
Bi	bliog	graphy		192

List of Tables

1.1	SLM producers	5
A.1	SLM producers	3
A.2	light utilization efficiency	7

List of Figures

1.1	The three approaches to diffraction theory	4
1.2	Plane wave [22]	8
1.3	Field distribution from a source observed on a screen at (y_i, z_i) [22].	13
1.4	Two-dimensional array of windows with external dimensions $c \times n$ [22].	15
1.5	The diffraction pattern [22]. \ldots \ldots \ldots \ldots \ldots \ldots	15
1.6	Arrays of rectangular apertures with different aperture sizes and inter	
	spaces: (a) $a = 8$ pixel, $b = 16$ pixel, $c = 136$ pixel, $l = 16$ pixel,	
	m=24 pixel, $n=208$ pixel, (b) $a=8$ pixel, $b=32$ pixel, $c=$	
	264 pixel, $l = 16$ pixel, $m = 48$ pixel, $n = 400$ pixel, (c) $a = 8$ pixel,	
	b = 16 pixel, $c = 392$ pixel, $l = 16$ pixel, $m = 24$ pixel, $n = 400$ pixel,	
	(d) $a = 4$ pixel, $b = 16$ pixel, $c = 388$ pixel, $l = 8$ pixel, $m = 24$ pixel,	
	n = 392 pixel (e) $a = 8$ pixel, $b = 16$ pixel, $c = 264$ pixel, $l = 16$ pixel,	
	m = 24 pixel, $n = 400$ pixel	17
1.7	Fraunhofer diffraction pattern of the aperture sketched in Fig. 1.6(a).	18
1.8	Fraunhofer diffraction pattern of the aperture sketched in Fig. 1.6(b).	19
1.9	Fraunhofer diffraction pattern of the aperture sketched in Fig. 1.6(c).	20
1.10	Fraunhofer diffraction pattern of the aperture sketched in Fig. 1.6(d).	21
1.11	Fraunhofer diffraction pattern of the aperture sketched in Fig. 1.6(e).	22
1.12	1D object; a slit with width of 0.4 mm	29
1.13	2D object; a rectangle with width of 0.4 mm and height of 1.2 mm. $$.	29

1.14	Intensity profile of near field diffraction pattern $(z_i = 10 \text{ mm})$ of	
	the 1D object: (a) direct method, (b) angular spectrum propagation	
	method, (c) SFFT, (d) DFFT. \ldots \ldots \ldots \ldots \ldots \ldots	30
1.15	Intensity profile of medium field diffraction pattern ($z_i = 100 \text{ mm}$) of	
	the 1D object: (a) direct method, (b) angular spectrum propagation	
	method, (c) SFFT, (d) DFFT. \ldots \ldots \ldots \ldots \ldots	31
1.16	Intensity profile of far field diffraction pattern ($z_i = 1000 \text{ mm}$) of	
	the 1D object: (a) direct method, (b) angular spectrum propagation	
	method, (c) SFFT, (d) DFFT. \ldots \ldots \ldots \ldots \ldots \ldots	32
1.17	Near field diffraction pattern ($z_i = 10 \text{ mm}$) of the 2D object: (a)	
	direct method, (b) angular spectrum propagation method, (c) SFFT,	
	(d) DFFT	33
1.18	Medium field diffraction pattern ($z_i = 100 \text{ mm}$) of the 2D object: (a)	
	direct method, (b) angular spectrum propagation method, (c) SFFT,	
	(d) DFFT	34
1.19	Far field diffraction pattern ($z_i = 1000 \text{ mm}$) of the 2D object: (a)	
	direct method, (b) angular spectrum propagation method, (c) SFFT,	
	(d) DFFT	35
1.20	(a) In DOE Fabrication techniques, based on the periodic nature of	
	the electromagnetic wave that there is no difference between a 2π	
	and a $N2\pi$ phase delay, the thickness can be significantly reduced by	
	blazing process, (b) For the fabrication ease, the continuous phase	
	profile can be replaced by a quantized phase	38
1.21	Illustration of the general geometry for DOE design problems	40
1.22	Illustration of the iterative Fourier transform algorithm (IFTA) for	
	DOE design.	47
1.23	Illustration of the relation between $g(\mathbf{x})$ and $f(\mathbf{x})$; the complex am-	
	plitude $g(\mathbf{x})$ is given within the total field and the signal $f(\mathbf{x})$ within	
	the signal window \mathbb{F}	49

1.24	Illustration of the effect of the quantization for $N = 3$. The dashed	
	lines indicate the thresholds	53
1.25	Illustration of stagnative iteration; stagnation occurs if the values of	
	$G_{j+1}(\mathbf{u})$ (hatched parts in (b)) do not change enough to 1 cross the	
	threshold levels (dashed lines)	55
1.26	Illustration of the effect of $Q3^p$	55
1.27	Illustration of a stepwise introduction of $Q3$ during iteration from (a)	
	the analog to the (d) quantized distribution	57
1.28	IASBS logo as object for the implementation of the iterative methods	
	for DOE design. The original size has 192×192 pixels	62
1.29	(a) The object is put in a matrix 2 times bigger, and (b) 4 times bigger.	62
1.30	(a) Signal-to-noise ratio (Eq. 1.74), (b) Signal-to-noise ratio (Eq. 1.76),	
	(c) RMS-E, and (d) the diffraction efficiency when the object is in-	
	serted in a matrix 2 times bigger (blue) and when is inserted in a	
	matrix 4 times bigger (red)	63
1.31	The objects to examine the effect of an offset to reduce noises: (a)	
	there is no offset, (b) there is an offset in horizontal and vertical direc-	
	tions ($\mathbf{x}_0 = (704, 704)$ pixels $= \frac{11}{12}$ size of the input object (768×768)).	65
1.32	(a) Signal-to-noise ratio (Eq. 1.74), (b) Signal-to-noise ratio (Eq. 1.76),	
	(c) RMS-E, and (d) the diffraction efficiency when there is no offset	
	in the position of the object (blue) and when there is an offset (red).	66
1.33	(a) Signal-to-noise ratio (Eq. 1.74), (b) Signal-to-noise ratio (Eq. 1.76),	
	(c) RMS-E, and (d) the diffraction efficiency when the initial phase	
	is a constant phase (blue) and when is random (red). \ldots	67
1.34	Reconstructed pattern for the case where the initial phase is (a) a	

1.35	(a) Signal-to-noise ratio (Eq. 1.74), (b) Signal-to-noise ratio (Eq. 1.76),	
	(c) RMS-E, and (d) the diffraction efficiency for different cases of	
	quantization: (blue) direct quantization in 8 levels, (red) iterative	
	quantization in 8 levels and 4 iterations in each step. The initial	
	phase is random.	69
1.36	A typical DOE designed by IFTA method. The object is 1.31(b).	
	The DOE was quantized directly in 8 levels	70
1.37	Spherical wave superposition and propagation method for designing	
	DOEs	71
1.38	Electro-optical modulators	78
1.39	Laser-beam patterning (for DOE mask production)	82
1.40	Electron-beam pattern generators	84
1.41	Mask aligner and contact printing photolithography	85
1.42	(a) Cholesteric LC, (b) Smectic LC, (C) Nematic LC, (d) Discotic	
	LC in nematic-like orientation	91
1.43	(a) Molecule orientation in a liquid crystal device: (left) at equi-	
	librium with no field, (middle) with a field slightly larger than the	
	critical field, (right) at equilibrium with a strong field, (b) Twisted	
	nematic LC, (c) Parallel aligned nematic LC	94
2.1	Geometrical optics, Mie and Rayleigh regimes	100
2.2	The lateral gradient force of a non-uniformly distributed laser beam.	
	The figure do not show the scattering component due to reflection	
	that tends to repel the object from the focus. The bold arrow indicate	
	the net restoring force.	101
2.3	The axial gradient force towards the focus of the trapping light. These	
	figures do not show the scattering component due to reflection that	
	tends to repel the object from the focus. The bold arrows indicate	
	the net restoring force in the respective directions.	102

2.4	Typical setup for single particle optical trapping
2.5	Absorption spectra of biological tissue [113]
2.6	Numerical aperture of objective $NA = n \sin \alpha$ (a) $n = 1$, $\alpha =$
	32°; $NA = 0.6$ (b) $n = 1$, $\alpha = 48^{\circ}$; $NA = 0.8$ (c) $n = 1.515$, $\alpha =$
	$58^{\circ}; NA = 1.3109$
2.7	Diagram of back focal plane detection. The detection lens is posi-
	tioned such that the backfocal plane of the condenser is imaged onto
	the QPD. A dichroic mirror reflects the detection laser, but transmits
	the light used for imaging
2.8	AOD
2.9	(a) The desired 3 array of spots with three different intensities, (b)
	detail of the calculated phase DOE (eight phase levels), (c) detail of
	the phase DOE calculated to generated the same array but with the
	same intensity in each spot, (d) intensity profiles (computer simu-
	lated) along the three lines containing the spots: black - desired, red
	- obtained with the DOE in (b)
2.10	The desired array of spots in (a) the first and second plane with the
	different intensities, (b) detail of the calculated phase DOE (eight
	phase levels), (c) intensity profile (computer simulated) along the
	horizontal line containing the spots 1 and 2, and (d) along the vertical
	line containing the spots 3 and 4

- 2.11 The detail of the calculated phase DOE (eight phase levels), the reconstructed image obtained through computer simulation and the corresponding intensity profiles along the horizontal lines containing intensity spots of 12 spots arranged in a circular array: (a) The intensity of spots are the same $(q_1 = ... = q_{12} = 1)$, (b) $q_1 = q_2 = q_{12} =$ 6, $q_3 = q_4 = q_5 = q_9 = q_{10} = q_{11} = 3$ and $q_6 = q_7 = q_8 = 2$, (c) $q_1 = q_2 = q_3 = q_{11} = q_{12} = 6$, $q_4 = q_{10} = 3$ and $q_5 = q_6 = q_7 = q_7$ $q_8 = q_9 = 2$, (d) $q_1 = q_2 = q_3 = q_{11} = q_{12} = 12$, $q_4 = q_{10} = 4$ and $q_5 = q_6 = q_7 = q_8 = q_9 = 3$, and (e) $q_1 = q_2 = q_{12} = 12$, $q_3 = q_4 =$ 2.12 The phase fronts of two modes, l = 0, with plane wavefronts, and l = 3 with helical wavefronts. The phase fronts of l = 3 LG beam is as a triple start helix. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1232.13 Beam profiles of LG beams with various l and p indices. p = 0 has one radial node, and p = 1 has two radial nodes. l = 0 LG beams have plane wavefronts, l = 1 has one cycle of phase around the mode circumference, and l = 4 has four complete 2π phase cycles. 124 2.14 Phase-only DOEs for generating Laguerre-Gaussian beams with different topological charge l and their generated patterns (two times enlarged). The DOE shown in (a) imposes one 2π phase change for one revolution around the beam axis, (b) l = 3, (c) l = 10, (d) l = 1030. The size of the intensity ring can be modulated with varying the topological charge and therefore to trap particles with various sizes. 125 2.15 Amplitude DOEs for generating Laguerre-Gaussian beams with different topological charge l and their generated patterns (a) l = 1, (b)

3.1	Schematic of the trapping (red) and the imaging (green) beam paths.
	Including laser, SLM, DM (infrared dichroic mirror), MO (microscope
	objective), TL (tube lens), CCD1 and CCD2 (detectors), M1 (mirror
	to redirect the image into CCD2 and the telescope arrangement 132
3.2	Picture of the primary setup, at the TASC-INFM Optical Manipula-
	tion Lab, Trieste, Italy
3.3	Calibration curve which relates the SLM focal length, f_{SLM} , to the
	axial position, z , of the trapping plane
3.4	Phase DOEs to reconstruct a 2×2 array in different focusing planes 137
3.5	The results of addressing the DOEs of Fig. 3.4 on the sample. In the
	F_{SLM} plane, the distance between the side spots for (a) to (h) was
	1 mm, and for (i) to (l) was $0.5 mm$. After the objective this distance
	varies depending on the height of the patterns plane from the focal
	plane of the objective
3.6	(a) The experimental realization of the DOE explained in 2.9(b) and,
	(b) the 3d examination of the intensity distribution. (scale bar= $10\;\mu{\rm m})140$
3.7	Example of dynamic beam shaping; (a) to (i) 3×3 array of laser spots
	with a more intense spot in each one consecutively, (j) the same array
	with the spots all with equal intensity. (scale bar= 10 μ m) 141
3.8	Example of dynamic beam shaping; (a) a circular array of laser spots
	all with equal intensity, (b) to (n) the same array but in each one
	there is a more intense spot in different position. (scale bar= 10 μ m) 142
3.9	The experimental realization of the DOE explained in 2.10(b). Each
	image is a snap in different vertical distance respect to the objective
	focal plane. (scale bar= 10 μ m)
3.10	Logo of the institute (a) in a plane 10 μ m above the objective focal
	plane, (b) in a larger size in the same plane, (c) in plane 15 μ m above
	the objective focal plane. (scale bar= $10 \ \mu m$)

3.11 IASBS, the acronym of the institute name (a) in a plane 10 μ m above	
the objective focal plane, (b) in a plane 15 μm above the objective	
focal plane. (scale bar= 10 μ m) $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	145
3.12 Shaped beams to move RBC in vertical direction; The circular pattern	
is formed at (a) $z = 15 \ \mu m$, (b) $z \approx 13.5 \ \mu m$, (c) $z \approx 12 \ \mu m$, (d)	
$z \cong 10.5 \ \mu\text{m}$, (e) $z \cong 9 \ \mu\text{m}$, (f) $z \cong 7.5 \ \mu\text{m}$, (g) $z \cong 6 \ \mu\text{m}$, (h)	
$z \cong 7.5 \ \mu \mathrm{m},$ (i) $z \cong 9 \ \mu \mathrm{m},$ (j) $z \cong 10 \ \mu \mathrm{m},$ (k) $z \cong 11 \ \mu \mathrm{m},$ (l)	
$z \cong 12 \ \mu m$, (m) $z \cong 13.5 \ \mu m$, (n) $z = 15 \ \mu m$, (o) $z \cong 16.5 \ \mu m$, (p)	
$z \cong 18 \ \mu m$, (q) $z \cong 19.5 \ \mu m$, (r) $z \cong 21 \ \mu m$, (s) $z \cong 22.5 \ \mu m$, (t)	
$z \cong 24 \ \mu \text{m.}$ (scale bar= 10 μm)	147
3.13 Shaped beams to tilt RBC in the sides: (a) top, (b) right, (c) down,	
(d) left, (e) right-top, (f) right-down, (g) left-down, and (h) left-top.	
For top, right, down and left sides, the tilt is done in 4 angle levels	
((a) to (d)) and for right-top, right-down, left-down, and left-top sides	
in 3 angle levels. (scale bar= 10 μ m) $\dots \dots \dots \dots \dots \dots \dots \dots$	148
3.14 Shaped beams to shift RBC in: (a) to (k) x direction, and in: (l) to	
(p) y direction. (scale bar= 10 μ m)	150
3.15 Multiple trapping experiments (a) four particles are trapped in 2×2	
in plane array. The traps are formed at $z=10~\mu{\rm m}$ and are separated	
by 10 μ m. (b) array of 4 particles at $z = 10 \ \mu$ m and are separated by	
12 $\mu \mathrm{m.}$ (c) Eight particles trapped in volume. The trapping planes	
are held at $z = 6 \ \mu m$ and $z = 14 \ \mu m$. (scale bar= 10 $\ \mu m$)	151
3.16 Nine microbeads trapped with different trapping forces. (a) moving	
the microscope stage with a low velocity all the beads remain trapped,	
(b) and (c) increasing the velocity the beads of the first, and (d) to (f)	
second column are removed from the traps, showing different trapping	
forces. (scale bar= 10 μ m)	151

- 3.17 Relative velocity bead-water, drag force and trapping force for the array of 3×3 traps. Beads 1, 2 and 3 escape from the traps for forces approximately two times lower than beads 4 and 6. Bead 5 escapes for a higher force since its trap is strengthen by the zero order. The inset shows the numbering for the nine beads trapped similar to the intensity distribution depicted in Fig. 2.9. (scale bar= 10 μ m) 153
- 3.19 RBC (a) seen from surface, (b) in profile, forming rouleaux, (c) rendered spherical by water, (d) rendered crenate by salt. (c) and (d) do not normally occur in the body.

3.25	Schematic of the setup with an extension to lateral observation of the
	sample, Including laser, SLM, DM (infrared dichroic mirror), MO
	(microscope objective) for trapping and vertical observation, MO2
	(microscope objective) for lateral observation, TL (tube lens), CCD1
	and CCD2 (detectors), M1 (mirror to redirect the image into CCD2
	and the telescope arrangement. $\ldots \ldots \ldots$
3.26	Four particles trapped in volume. The distance of particles in each
	plane is 10 μ m, and the two planes are separated by 6 μ m. Four snaps
	of the real time movie are shown
3.27	A RBC is trapped, tilted to stand vertically, and rotated around the
	beam axis. Four snaps of the real time movie are shown
A.1	Sandwich structure of Hamamatsu PAL-SLMs
A.2	Model X8267 from Hamamatsu
B.1	Calculated power spectrum for two trapped beads, with one trap 10
	times stiffer than the other
B.2	Fractional error when calculating the variance at a limited bandwidth. 189