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ABSTRACT

SOME PROPERTIES OF COMPOSITION OPERATORS ON

WEIGHTED HARDY SPACES
BY:
SEDIGHEH JAHEDI

Composition operators have been studied on a variety of spaces. The
study of composition operators began with the work of Nordgren and Schwartz
on classical Hardy space H?Z.

Given a collection S of analytic functions on some domain and an analytic
map ¢ from that domain into itself. We define the composition operutor C,
on S by Cpof = fop for f € S. Our work is primarily devoted to the case
where the collection S is the Weighted Hardy space HP(8), 1 < p < oo,
of formal power series f = %_%0 f (n)z", whose the coefficients satisfying in
io lf(n)(Pﬂ(n)” < oo, and {ﬁ”(n)}nzo is a sequence of positive numbers with
B(0) = 1. The weighted Hardy space H?(8) with || - ||4,

1P = £ = i Fn)PA(n)?

iv




is a reflexive Banach space. The Hardy, Bergman and Dirichlet spaces can
be viewed in this way when p = 2 and 8(n) = 1, f(n) = (n +1)7 and
B(n) = (n+ 1)%, respectively. We study the relationship betwzen properties
of C, and properties of the symbol ¢. The goal is to see boundedness,
compactness and Fredholm of C, as a consequence of particular geometric

and analytic features of the function .
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CHAPTER 1

BACKGROUND




1. BACKGROUND

Introduction

Given a collection S of analytic functions on some domain and an analytic
map ¢ from that domain into itself. We define the composition operator C,,
on S by C,f = fopfor f €S. Without saying anything more, there is no
reason that C,, f should even belong to S. However, in many cases where the
collection S is a Banach space, the operator C, maps S into itself.

Composition operators have been studied on a variety of spaces. The
study of composition operators began with the work of Nordgren [19] and
Schwartz [20] on classical Hardy space H 2 The first explicit reference to
composition operators in the Mathematical Subject Classification Index ap-
peared in 1990.

Our work is primarily devoted to the case where the collection S is the

weighted Hardy spaces H?(8), 1 < p < oo, of formal power series f =

(18

f(n)z”, whose coefficients satisfying in § If(n)l”ﬁ(n)p < oo, for some
0 n=0

weight {8(n)},>0.

n




Section 1

Classical Banach Spaces of Analytic Functions

In this section we begin by defining the Hardy spaces of the unit disc

D = {2z : |z] < 1} in the complex plane. For more details one can refer to

the books [9],[10],[11],[15].

Definition 1.1.1. For 0 < p < co the Hardy space H? is the space of all

functions f analytic in D such that || f||p = (= 27 | f(re®)[Pdf) < oo.

sup
0<r<1
For 1 < p < oo, the functional || - ||, is a norm which makes H? into a

Banach space, while for 0 < p < 1, the metric

d(f,9) = Il =gl

makes H? into a complete linear metric space.
For p = 0o, H® is the Banach space of bounded analytic functions on D,

taken in the supremum norm:

170 = supl£ ()]

For p = 2, H? is a Hilbert space with the inner product

<= [y

and an easy calculation shows that the monomials 1,z,2%,... form an or-
thonormal set. Since H? is spanned by the monomials, {1, z,2%,...} is an or-
thonormal basis for H?, and we regard this as the standard basis. Since every

function analytic on the open disc has a MacLaurin expansion that converges




absolutely and uniformly on compact subsets of D, for f(z) = X f (n)z" we
n>0

have
27 R do
2 u 10y12 7
178 = sup [7Is0eE]
sup [ 323 Flm) FlRyretetn e &
pu— e —_—
0<r£1 0 L=0k=0 27
= sup Y |f(r)'r" =X |f(n)]*.
0<T<1n:0 n=0

By this calculation we have:

H = {f =) f(n)z": 3" |f(n)* < co}.
n=0 n=0
Now consider linear transformation M, of multiplication by z on H? de-

fined by

(M.)(2) = 3 f(m)an.

n=0

~

R fln—-1) n>1
So (M. f)(n) = ( )

0 n=0.
Clearly M, shifts the standard basis. Easy calculation shows that the

forward unilateral shift, defined by

S(f(O),f(l),f(Z),...) = (f(l),f(Q),)

on [*(IN) is unitarily equivalent to the operator of multiplication by z on H 2,

Definition 1.1.2. For 0 < p < co, the Bergman space AP is the set of

functions analytic on the unit disc for which

e <

where dA(z) is the Lebesgue area measure on the unit disc and

171, = € [ 1£(2)PdAE)}.




For p > 1, AP is a Banach space with norm ||f|,. For 0 < p < 1, A?
is a non-locally convex topological vector space and d(f,g) = ||f — g2 is a

complete metric on AP.

Moreover, A? is a Hilbert space with inner product

< f.g>= %/f(z)MdA(z).

A calculation using polar coordinates shows that the monomials 1, z, 27, ...

are orthogonal in A% and ||z"||* = -L-. For MacLaurin expansion f(z) =
n+1
§ f(n)z" and p < 1 we have:
n=0
dA(z) /1’/2“ X & s, (T e drdl
2 — k n+k+1_i(n—k)6
[u@r = 77 3 f frmtrete ==

= ni::o|f(n)|2 /OP 2rtldr

n=0 n+1

It follows that

. dA(z)
9P = i [ &P
o0 £ 2
_ },I_I.I}r;li(z)l pin
|/ (n)?
B g n+1

For complete discussions of the Bergman spaces see [31],[1].

Definition 1.1.3. The set of functions analytic on the unit disc for which

r@re <o




with norm given by

111D = [f(O)* + /D |fl(z)|2d147rﬂ

and inner product

< f,9>p=£(0)s00) + [ f'(2)g

is called the Dirichlet space D.
We can see that the monomials 1, z,2%,... form an orthogonal basis for

[D. For MacLaurin expansion, f(z) = % f(n)z" and p < 1 we have:

n=0
! % — PN} F ntk— i(n,k)odrdﬂ
/,)le(z)l2 - — /(;/; ;gf(")f(k)rJr 1e T
_ o 9 2 p2n
= ;n ()P —
= 3 nlf(n)e™
n=1

So

Ifllp = |f(0)|2+}71_122n1f(n)|2p2n
n=1

- lf(o)|2+§:n|f(n)|2
= T+ )lfin

Definition 1.1.4. A Banach space of analytic complex valued functions
on a set X that the vector operations are the pointwise operations, f(z) =
g(z) for each z € X then f = g, f(z) = f(y) for each function in the
space implies £ = y and for each z in X, the linear functional f +— f(z) is
continuous, is called a functional Banach space of analytic functions.

Let K, be the linear fucntional for evaluation at z, tha* is, K,(f) =

f(z). For functional Hilbert space, by the Rieze representation theorem,




corresponding to each z € X there is a function, call K,, in the Hilbert
space that induces this linear functional, f(z) =< f, K, >. In this case the
functions K, are called the reproducing kernels.

Multiplication operators characterized by their adjoints having the Ks
an eigen vectors [26]. Composition operators, also can be characterized by
considering the set of point evaluation linear functionals. Caughran and

Schwartz [2] showed that:

Theorem 1.1.5. An operator A on Y, functional Banach space of X
into itself, is a composition operator if and only if the set {K, : z € X}
is invariant under A*. In this case ¢ is determined by A*K, = K,(;) and
A =C,.

Proof. If A = C,, then for every f in Y,
(f, A" K,) = (Af, KJ) = f(p(2)) = (f, Kp(z)
so A*K, = Ky(;). Conversely, if A"K,; = Ky() then

Af(z) = (Af, K,) = (f, Kpz) = fo(2)).

Hence A = Cp. O
By definition of classical Hardy, Bergman and Dirichlet space evaluation

at X in the disc on H?, A? and ID given by f(A) = (f, K»), where on H?(D)

we have:
1 1
K = S d |K)||=————=
R Tl e
and on A%(D) we have:
1 1
Ky(2) = ——— and |K||= —
&) = o 2 = T




and on D we have:

1 1
) and ”K)\Hz = |A|2 log(

1
z) = 5, ol =55

1-— |A|2)'
Since polynomials are dense in the Hardy and Bergman Banach spaces for

1 < p < oo, we can get another formula for the evaluation functional as

follows. If f € H? and |A| < 1 then

Y f(e”) do
f(/\)_/o 1— de 27

and

1

Il = ()™

If f € A? and |A| < 1 then

f(’\):/D( f(z) dA(z)

1-X2)2 7

For a proof and more details can refer to [8].




