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Abstract 

Heteropolyacids (HPAs) are nanosized metal�oxygen cluster anion acids stronger than the 

conventional solid acids. In this thesis, a series of organic-inorganic nanocomposite 

membranes for operation of proton exchange membrane fuel cells (PEMFCs) at high 

temperature/low humidity were prepared. Cesium hydrogen salt of heteropolyacids (CsHP) 

including Cs2.5H0.5PMo12O40 (CsPMo) and Cs2.5H0.5PW12O40 (CsPW) were incorporated 

into Nafion. The addition of hygroscopic and conductive CsHP enhances the water content 

but limits the activity of the sulfonic group of polymer matrix. Particles agglomeration and 

Nafion active sites (sulfonic groups) covering are seen in the nanocomposite membranes. 

The insoluble and high surface area solid acids CsPW and H3PW12O40/SiO2 (PWS) with 

different loadings are incorporated into end-group cross-linkable, sulfonated fluorinated 

biphenol (ESF-BP) copolymer. Thermal analyses, water uptake, ion exchange capacity 

(IEC), oxidative stability, mechanical property, proton conductivity in different condition 

and the single PEMFC performance are conducted to investigate the influence of HPAs 

additive on the prepared PEMs. Proton conductivity values were measured at different 

humidity and temperature conditions. The conductivity for nanocomposite membranes at 

anhydrous and high-temperatures condition (110 °C and 120 °C) is higher than the plain 

polymer due to the additional water retention or additional surface functional sites 

provided by HPAs. The fuel cell responses show that in the fully hydrated state and at the 

higher current densities, the prepared MEAs with nanocomposite membranes possess 

better response compared with the plain Nafion. In partially hydrated cell, at both low and 

high current densities, the superior performance of the MEA prepared by nanocomposite 

membranes was observed. The stability of single cells under a constant load demonstrates 

that the decay rate for recast Nafion membrane is rapid due to the dehydration. The 

covering effect for the CsPW particle is stronger than that for the CsPMo particle results in 

higher water uptake, IEC, the conductivity and the fuel cell performance and lower voltage 

decay for CsPMo/Nafion membrane rather than CsPW/Nafion membrane. The results of 

oxidative stability of membranes show that the CsPW/Nafion composite membrane has 

superior stability against oxidative agents due to the CsPW in lowering H2O2 diffusion 

and/or catalyzing the peroxide decomposition. 

The FT-IR measurement of the prepared CsPW, CsPMo and PWS inorganic powders show 

that the primary Keggin structure remains almost unaltered. The molecular structure of 

ESF-BP copolymer is identified by 1H NMR spectra. The addition of HPAs to the ESF-BP 



polymer matrix increases glass transition temperature, tensile strength, oxidative stability, 

water uptake (slightly) and conductivity and decreases the IEC (slightly), membrane 

density and elongation at break. 

The results of modeling of PEMFCs by multi-layer perceptron (MLP) and radial basis 

function (RBF) artificial neural networks and the adaptive network based on fuzzy 

interface system (ANFIS) show that the MLPNN can model the system with higher 

accuracy than the RBFNN but the required time for developing the RBFNN model is lower 

than the MLPNN due to the learning procedure. The ANFIS learning time and the 

accuracy are noticeably lower and higher than the RBFNN and the MLPNN, respectively.  

Novel nanocomposite membranes were prepared using polymer blend of polyethylene 

oxide (PEO) and polyvinylidene fluoride-chloro tetrafluoro ethylene (PVDF-CTFE) 

copolymer with CsPW as proton conductor by solvent-free procedure. The alteration of the 

conductivity in the range of temperatures in dry condition may be attributed to segmental 

motion of polymer which resulted in proton hopping from one site to another or increasing 

free volume for proton motion. In fully hydrated state, dynamic equilibrium between 

different proton moieties determines the mode of proton conductivity which can be 

described by Grotthuss mechanism. In the presence of water molecule, the free proton may 

be formed.  

Keywords: Heteropolyacid; Nanocomposite membrane; Nafion; Proton exchange 

membrane fuel cell; Poly(arylene ether); Artificial neural network; Polyethylene oxide 
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1.1. Introduction 

Fossil fuels have provided a convenient and plentiful energy source, and have been used 

profitably in all sectors of the global economy. However, continued reliance on fossil 

resources causes several problems. First, worldwide oil demand continues to increase, and 

replacing the produced oil is technically and politically demanding and very capital 

intensive. Second, known fossil reserves are concentrated in only a few regions of the 

world. Oil and natural gas reserves, in particular, are in regions geographically separate 

from those undergoing the most rapid economic growth. Third, the widespread use of 

fossil fuels contributes to environmental disturbances, such as air pollutants and CO2 [1]. 

Fuel cells will contribute to reducing the demands for fossil fuels [2]. A fuel cell 

directly converts chemical energy into electricity thereby eliminating the mechanical 

process steps that limit thermodynamic efficiency. It can be two to three times as efficient 

as the internal combustion engine with little or no emission of primary pollutants (CO, HC 

and NOx) or greenhouse gas CO2 [3].  

The basic principle of a fuel cell is as follows. Hydrogen enters the pores of the anode 

and reaches the reaction zone and dissociates to H+ (see Fig. 1.1). The protons pass through 

the proton exchange membrane and electrochemically react with the reduced oxygen (from 

air) at the cathode, produce water: 

Anode: 22 4 4H H e      (1.1) 

Cathode: 2 24 4 2H O e H O      (1.2) 

The overall reaction: 2 2 22 2H O H O   (1.3) 

There is a significant difference between a battery and a fuel cell. A battery has to store 

its chemical energy and the output will be depleted over time until eventually, the battery is 

totally discharged. If it is a rechargeable (secondary) battery it can be used again after 

charging, otherwise it has to be exchanged by a new battery (primary battery). A fuel cell, 

on the other hand, is continuously fed with a fuel, e.g. hydrogen which is stored outside of 

the cell. The process producing the electrical current continues for as long as there is a 

supply of reactants [4]. 
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Fig. (1.1): The operating principle of a fuel cell [4] 

 

 

The first fuel cell was demonstrated by Sir William Grove (Fig. 1.2) at the Royal Society 

of Chemistry in London in 1839 [5]. The catalysis pioneer Wilhelm Ostwald (1853-1932) 

was also involved in the early days of fuel cell development. Other important work in the 

late 19th century was performed by Walther Nernst (1864-1941) and Fritz Haber (1868-

1934). All of these three German scientists were later together with Carl Bosch (1874-

1940) involved in the development of the ammonia process, which would revolutionize the 

chemical industry in general and large-scale high pressure manufacture of chemicals in 

particular. The first practical alkaline fuel cell was developed by Francis T. Bacon (1904-

1992) and co-workers at Cambridge University.  

 

 

(a) 

 

(b) 

Fig. (1.2): (a) Grove's fuel cell, (b) Sir William Grove (1811-1896) [5]. 
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1.2. Fuel cell benefits and limitations [6] 

 Energy security: reduce oil consumption, and increase the amount of the country�s 

available electricity supply. 

 Reliability 

 Low operating cost 

 Constant power production: generates power continuously unlike backup 

generators, diesel engines or Uninterrupted Power Supply (UPS). 

 Choice of fuel: allows fuel selection, hydrogen may be extracted from natural gas, 

propane, butane, methanol and diesel fuel. 

 Clean emissions 

 Quiet operations: quiet enough to be installed indoors, normal conversation 

possible near to fuel cell, and hearing protection is not required as for the 

combustion engines. 

 High efficiency: converts up to 50�70% of available fuel to electricity and reduces 

fuel costs and conserves natural resources. 

 

1.3. Types of fuel cells 

Fuel cells are usually classified by the electrolyte employed in the cell [7]. A second 

grouping can be done by looking at the operating temperature for each of the fuel cells. 

There are, thus, low-temperature and high-temperature fuel cells. Low-temperature fuel 

cells are the Alkaline Fuel Cell (AFC), the Polymer Electrolyte Membrane Fuel Cell 

(PEMFC), the Direct Methanol Fuel Cell (DMFC) and the Phosphoric Acid Fuel Cell 

(PAFC). The high-temperature fuel cells operate at temperatures approx. 600-1000 °C and 

two different types have been developed, the Molten Carbonate Fuel Cell (MCFC) and the 

Solid Oxide Fuel Cell (SOFC). The electrolyte used in DMFCs, in most cases, is the same 

kind of membrane used in a PEMFC which is commonly referred to the fuel cell that uses 

hydrogen or hydrogen-rich gas (i.e., production from hydrocarbon reformers) as fuel. 

Table (1.1) provides a summary of fuel cell types [8]. The electrolyte is provided in the 

first column. Selected operating parameters appear in the second column. The fuel listed is 

the crudest possible. AFCs, for example, require pure hydrogen, whereas the PAFC can 

tolerate hydrogen-rich gas from a hydrocarbon reformer. The reformate typically contains 

some impurities, such as CO, which can poison some fuel cells. 



 

             Table (1.1): Summary of fuel cell types [8] 
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1.4. Hydrogen production [9-11] 

Of the present, world-wide production of hydrogen (around 50 million tonnes per annum), 

over 90% comes from raw fossil materials. In energy terms, hydrogen equates to around 

5% of the world�s oil consumption. 

The gasification of coal is the oldest means of obtaining hydrogen from fossil fuels. 

When heated in a restricted supply of air (so-called �destructive distillation� or �pyrolysis�), 

coal is converted to mixture of hydrogen, methane and carbon monoxide (typically, 50, 35 

and 8%, respectively), together with coal tar and coke. Alternatively, when heated coal is 

reacted with steam the �water-gas reaction� occurs: 

2 2C H O CO H      (1.4) 

The water-gas reaction is highly endothermic. Conversely, the combustion of coal or 

coke in air is highly exothermic. It is, therefore, usual to pair off the two reactions so as to 

balance the heat evolved with that absorbed. The two reactions may be conducted 

consecutively in short bursts or, more usually, simultaneously by feeding a mixture of air 

and steam to the heated bed. The resulting gas is a mixture of CO, H2, CO2, and N2. This 

may be upgraded in terms of hydrogen content by the �water-gas shift reaction�. The gas is 

reacted with steam over a catalyst that converts carbon monoxide to carbon dioxide and 

increases the amount of hydrogen: 

2 2 2CO H O CO H    (1.5) 

The steam reforming of natural gas is the most efficient and widely used process for 

making hydrogen. At present, it is also the cheapest route. The methane is reacted with 

steam and air over a nickel-based catalyst: 

900

4 2 23
C

Ni
CH H O CO H 



 (1.6) 

The resulting product is known as �synthesis gas� (or �syngas�). As with the 

gasification of coal, steam reforming can be combined with the water-gas shift reaction 

(reaction 1.5) to increase the yield of hydrogen. Steam reforming is very energy-intensive 

since it operates at high temperatures (850�950 °C) and high pressure (3.5 MPa). The 

thermal efficiency can reach 60�70%. 

A third method is �partial oxidation� in which fuel and oxygen are combined in 

proportions such that the fuel is converted into a mixture of hydrogen and carbon 

monoxide. The amount of hydrogen is only about 75% of that produced by steam 

reforming (but of course the content can be increased via the water-gas shift reaction). The 


