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Abstract

Control charts are the simplest type of on-line process control techniques. We consider
the situation where a product unit may be classified into & (k > 2) different categories.
The classical case has been studied by Duncan and Marcucci, among others, and
Wang and Raz have suggested two kinds of control charts using probabilistic and
fuzzy approaches. We propose yet another type of control chart that is more efficient
in theory and practice.

Tn classical quality control, the binary classification of product units into ” conforming”
and ” nonconforming” is used to construct the p-chart. When the quality characteristic
is a variable, the p-chart, responds very weakly to small variations in the process mean
and variance. In this thesis we consider quality as a fuzzy set and present a control
chart in terms of the mean degree of nonconformity. We show that this chart has a

better response to variations in the mean as well as the variance of process.
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Introduction

Control charts are widely used for monitoring and examining a production process.
The power of control charts lies in their ability to detect process shifts and to iden-
tify abnormal conditions in the process. This makes possible the diagnosis of many
production problems and often reduces losses and brings substantial improvements
in product quality.

Linguistic scales are commonly used in industry to express properties or characteris-
tic of products. Typically, the conformity to specifications on a quality standard is
evaluated onto a two-state scales, e.g. acceptable or unacceptable, good or bad, and
so on, which is not appropriate in many situations, where product quality can assume
more intermediate states. Different procedures are proposed to monitor multinomial
process when items are classified into & distinct categories. Duncan [6], recommended
a chi-square contol chart for monitoring a multinomial process {;hat is a generalization
of the usual p-chart for which there are only two categories. This type of general-
ized p-chart is discussed further by Marcucci [18]. Marcucci proposed two procedures
using Shewhart-type controls. The first type uses the Pearson x? statistic and is
designed to detect changes in any of the quality proportions. The second type uses
the multinomial distribution, which can be approximated by a multivariate normal

distribution. We shall discuss the generalized p-chart briefly in the next section.




7adeh introduced the notion of fuzzy sets in 1965 [29] and has continued to discuss this
concept, more recently in [30] and [31]. There have also been many efforts to apply
the ideas of fuzzy sets to statistical problems [7, 14, 22, 24]. Raz and Wang [20] and
Wang and Raz [25] proposed two approaches for the construction of control charts,
namely a probabilistic approach and a membership approach. In the probabilistic
approach, the representative values of the linguistic data were obtained by calcu-
lating the modes, medians, or fuzzy averages of their membership functions. These
representative values were then utilized to construct control charts using traditional
statistical methods. On the other hand, in the membership approach, the process
level was estimated by the average of the total set of linguistic observations, and the
representative value of the average was taken as the center line of the control chart.
The control limits were then offset from the center line by a multiple of the fuzziness
quantity of the estimated process level. Kanagawa et al. [15] introduced modifica-
tions to the construction of control charts given by Wang and Raz. Their study aimed
at directly controlling the underlying probability distributions of the linguistic data,
which were not considered by Wang and Raz. Kanagawa et al. [15] proposed control
charts for linguistic data from a standpoint different from that of Wang and Raz in
order not only to control the process a\/;erage, but also to control the process vari-
ability. They presented new linguistic control charts for process average and process
variability based on the estimation of the probability distribution existing behind
the linguistic data. They defined the center line as the average mean of the sample
cumulants and then calculated the control limits using Gram-Charlier series. The
main difficulty of this approach is that the unknown probability distribution function

cannot be determined easily. These procedures are reviewed by Woodal et al. [27]




and discussed by Laviolette et al. [17] and Asai [3]. Taleb and Limam [23] discussed
different procedures of constructing control charts for linguistic data, based on the
fuzzy sets and probability theories. A comparison between the fuzzy and probabilistic
approaches, based on the average run length and the samples under control, is made
using real data, and it is shown that contrary to the conclusions of Raz and Wang
[20], the choice of degree of fuzziness affects the sensifivity of control charts. Gul-
bay and Kahraman [11, 12, 13] developed fuzzy approaches to control charts based
on fuzzy transformation methods, which include fuzzy mode, fuzzy midrange, and
fuzzy median. They used an a-cut approach to provide the ability of determining the
tightness of the inspection (the higher the value of « the tighter inspection). They
also presented a direct fuzzy approach to control charts. Chi-Bin Cheng [4] proposed
the following approach to deal with the expert subjective judgments. Based on the
rating scores assigned by individual inspectors to the inspected items, fuzzy numbers
are constructed to represent the vague outcomes of the process. Then fuzzy control
charts are constructed directly from these fuzzy numbers, thereby retaining the fuzzi-
ness of the original vague observations. The out of control conditions are formulated
using possibility theory.
In this thesis, we generalize the p-chart to a fuzzy setting.

The organization of this dissertation is as follows:

In Chapter 1, we review the concept of the classical control charts and their OC
curves. In Chapter 2, after recalling the fundamentals of fuzzy set theory we give
a short survey of the generalization of these control charts to a fuzzy setting and
in chapter 3, we propose yet another fuzzy generalizations. “‘We use simulation to

show that our chart is at least as effective as the previous charts, and in many cases,




significantly more effective. Finally, we provide a conclusion.




Chapter 1

Quality control charts

1.1 Introduction

Statistical techniques in manufacturing and quality assurance have had a long his-
tory. In 1924 Walter A. Shewhart of the Bell Telephone Laboratories developed the
statistical control chart concept. This is generally considered as the beginning of sta-
tistical quality control. Toward the end of the 1920s, Harold F. Dodge and Harold G.
Romig, both of Bell Telephone Laboratories, developed statistically based acceptance
sampling as an alternative to 100 percent inspection. By the middle of the 1930s,
statistical quality control methods were in wide use at Western Electric, the manu-
facturing arm of the Bell System. However, the value of statistical quality control
was not generally recognized by industry until World War II.

World War II saw the widespread use and acceptance of statistical quality control
concepts in manufacturing industries. Wartime experience made it apparent that
statistical techniques were necessary to control product quality. During World War
II, Deming worked for the United States War Department and Census Bureau. Fol-
lowing the war, he become a consultant to Japanese industries and convinced their

top management of the power of statistical quality control. This commitment to and




use of these methods has been a key element in the expansion of Japan’s industry
and economy. Deming and others are creating in industry an awareness of statistics
in general and statistical quality control in particular.

If a product is to meet the customer’s fitness for use criteria, it éhould be produced by
a process that is stable or repeatable. That is, it must be capable of operating with
little variability around the target or nominal dimensions of the product’s quality
characteristics. Statistical process control (SPC) is a powerful collection of problem-
solving tools use for achieving process stability and improving capability through the
reduction of variability.

SPC can be applied to any production process. Its major tools are:

1. Histogram

o

. Check sheet
Pareto chart
Cause and effect diagram

Defect concentration diagram

A T o

Scatter diagram

7. Control chart

Of these tools, the control chart is probably the most technically sophisticated. It was
developed in the 1920s by Walter A. Shewhart of the Bell Telephone Laboratories.

In order to understand the statistical concepts that form the basis of SPC, we must

describe Shewhart’s theory of variability [19].




1.2 Chance and assignable causes of quality varia-
tion

In any production process, regardless of how well designed or carefully maintained it
is, a certain amount of inherent or natural variability will always exist. This natural
variability or background noise is the cumulative effect of many small, essentially
unavoidable causes. When the background noise in a process is relatively small, we
usually consider it an acceptable level of process performance. In the framework of
statistical quality control, this natural variability is often called a “stable system of
chance causes”. A process that is operating with only chance causes of variation
present is said to be in statistical control. In other words, the chance causes are an
inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly
adjusted machines, operator errors, or defective raw materials. Such variability is
generally large when compared to the background noise, and it usually represents an
unacceptable level of process performance. We refer to these sources of variability
that are not part of the chance cause pattern as “assignable causes”. A process that
is opel:ating in the presence of assignable causes is said to be out of control.

A major objective of statistical process control is to quickly detect the occurrence of
assignable causes or process shifts so that investigation of the process and corrective
action may be undertaken before many nonconforming units are manufactured. The
control chart is an on-line process control technique widely used for this purpose.
Control charts may also be used to estimate the parameters of a production process

and, through this information, to determine process capability. The control chart




may also provide information useful in improving the process. The eventual goal of
statistical process control is the elimination of variability in the process. It may not
be possible to completely eliminate variability, but the control chart is an effective

tool in reducing variability as much as possible [19].

1.3 Statistical basis of the control chart

A typical control chart is shown in Figurel.l, which is a graphical display of a quality
characteristic that has been measured or computed from a sample versus the sample

number or time.
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Figure 1.1: A typical control chart

The chart contains a center line that represents the average value of the quality
characteristic corresponding to the in control state (i.e. when only chance causes are
present). Two other horizontal lines, called the upper control limit (UCL) and the
lower control limit (LCL), are also shown on the chart. These control limits are cho-

sen so that if the process is in control, nearly all of the sample points will fall between




them. As long as the points plot within the control limits, the process is assumed
to be in control, and no action is necessary. However, a point that plots outside of
the control limits is interpreted as evidence that the process is out of control, and
investigation and corrective action is required to find and eliminate the assignable
cause or causes responsible for this behavior. Even if all the points plot inside the
control limits, if they behave in a systematic or nonrandom manner, then this is an
indication that the process is out of control. If the process is in control, all the plotted
points should have an essentially random pattern. Methods looking for sequences or
nonrandom patterns can be applied to control charts as an aid in detecting out of
control conditions. Usually, there is a reason why a particular nonrandom pattern
appears on a control chart, and if it can be found and eliminated, process performance
can be improved.

There is a close connection between control charts and hypotheéis testing. Essentially,
the control chart is a test of the hypothesis that the process is in a state of statistical
control. A point plotting within the control limits is equivalent to failing to reject
the hypothesis of statistical control, and a point plotting outside the control limits
is equivalent to rejecting the hypothesis of statistical control. Just as in hypothesis
testing, we may think of the probability of type I error of the control chart (conclud-
ing the process is out of control when it is really in control) and the probability of
type II error of the control chart (concluding the process is in control when it is really
out of control).

We may give a general model for a control chart. Let w be a sample statistic that
measures some quality characteristic of interest, and suppose that the mean of w is

L and the standard deviation of w is o,. Then the center line (CL), the upper
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control limit (UCL) and the lower control limit (LCL) are defined as follows.

UCL = py + ko,

CL = Ly, (1.3.1)

LCL = iy — ko,
where k is the “distance” of the control limits from the center line, expressed in
standard deviation units. This general theory of control charts was first proposed by
Walter A. Shewhart, and control charts developed according to these principles are
often called Shewhart control charts.
The most important use of a control chart is to improve the process. We have found
that, generally:
1. Most processes do not operate in a state of statistical control.
2. Consequently, the routine and attentive use of control charts will identify assignable
causes. If these causes can be eliminated from the process, variability will be reduced
and the process will be improved.
3. The control chart will only detect assignable causes. Management, operator, and
engineering action will usually be necessary to eliminate the aésignable cause.
In identifying and eliminating assignable causes, it is important to find the underlying
root cause of the problem and to attack it. A cosmetic solution will not result in any
real, long-term process improvement. Developing an effective system for corrective
action is an essential component of an effective SPC implementation. We may also
use the control chart as an estimating device. That is, from a control chart that
exhibits statistical control, we may estimate certain process parameters, such as the
mean, standard deviation, fraction nonconforming or fallout, and so forth.

Control charts may be classified into two general types. If the quality characteristic
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can be measured and expressed as a number on some continuous scale of measurement,
it is usually called a variable. In such cases, it is convénient to describe the quality
characteristic with a measure of central tendency and a measure of variability. The
Z-chart is the most widely used chart for controlling central tendency, while charts
based on either the sample range or sample standard deviation are used to control
process variability. Many quality characteristics are not measured on a continuous
scale or even a quantitative scale. In this case, we may judge each unit of product
as either conforming or nonconforming on the basis of whether or not it possesses
certain attributes, or we may count the number of nonconformities appearing on a
unit of product. The p-chart is used to monitor the fraction of nonconforming units,

and the c-chart is used for the number of nonconfomities per product unit [19].

1.4 Choice of control limits

Specifying the control limits is one of the critical decisions that must be made in
designing a control chart. By moving the control limits further from the center line,
we decrease the risk of a type I error, that is, the risk of a point falling beyond
the controlllimits, indicating an out of control condition when no assignable cause is
present. Howex}er, widening the control limits will also increase the risk of a type 1I
error, that is, the risk of a point falling between the control limits when the process
is really out of control. If we move the control limits closer to the center line, the
opposite effect is obtained: the risk of type I error is increased, while the risk of type
IT error is decreased.

Regardless of the distribution of the quality characteristic, it is standard practice to

determine the control limits as a multiple of the standard deviation of the statistic
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plotted on the chart. The multiple usually chosen is k=3 («=0.0027). Hence, 3-
sigma limits are customariliy employed on control charts, regardless of the type of
chart employed. In the United Kingdom and parts of Western Europe, k is 3.09
(2=0.002).

We typically justify the use of 3-sigma control limits on the basis that they give
good result in practice. Moreover, in many cases, the true distribution of the quality
characteristic is not known well enough to compute exact probability limits. If the
distribution of the quality characteristic is reasonably approximated by the normal
distribution, then there will be little difference between 3-sigma and 3.09-sigma limits

[19].

1.5 Amnalysis of patterns on control charts

A control chart may indicate an out of control condition either when one or more
points fall beyond the control limits, or when the plotted points exhibit some non-
random pattern of behavior. The Western Electric Handbook [26] suggests a set of
decision rules for detecting nonrandom patterns on control charts. Specifically, it
suggests concluding that the process is out of control if either:

1. One point plots outside the 3-sigma control limits.

2. Two out of three consecutive points plot beyond the 2-sigma warning Iiﬁits.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from
the center line.

4. Eight consecutive points plot on one side of the center line.
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1.6 The operating-characteristic function and
average run length

The ability of charts to detect shifts in process quality is described by their operating
characteristic (OC) curves. The OC function is a graphical display of the probability
of incorrectly accepting the hypothesis of statistical control (the probability of type I
error) against shifts in process quality. The average run length (ARL) is the average
number of points that must be plotted before a point indicates an out of control

condition. For any Shewhart chart, the ARL can be calculated as follows:

1
~ probability that one point plots out of control '

ARL (16.1)

Thus, if the process is in control, the ARL is

ARL =1

and if it is out of control, then

ARL = ﬁ—ﬂ

For any Shewhart chart with the usual 3-sigma limits, assuming normality p=0.0027
is the probability that a single point falls outside the control limits when the process
is in control, so ARL = E_O}W = 370, when the process is in control. That is, even

if the process remains in control, an out-of-control signal will be generated every 370

samples, on the average [19].

1.7 The control chart for fraction nonconforming

Many quality characteristics cannot be conveniently represented numerically. In such

cases, we usually classify each item inspected as either conforming or nonconforming
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to the specifications on that quality characteristic. The terminology “defective” or
“nondefective” is often used to identify these two classifications of product. More
recently, the terminology “conforming” and “nonconforming” has become popular.
Quality characteristics of this type are called attributes. The fractioh nonconfom-
ing is defined as the ratio of the number of nonconforming items in a population to
the total number of items in that population. The items may have several quality
characteristics that are examined simultaneously by the inspector. The underlying
statistical principles for a control chart for the proportion of nonconforming units are
based on the binomial distribution. Suppose that the production process operates
in a stable manner, such that the probability that a given unit will not conform to
specifications is p, and that successive units produced are independent. Then each
unit produced is a realization of a Bernoulli ravr_ldom variable with parameter p. If
a random sample of 7 units of product is selected and if D is the number of units

that are nonconforming, then D has a binomial distribution with parameters n and

p, that is,

D ~ Bin(n,p),
E(D) = np, , (1.7.1)
Var(D) = npq.
The sample fraction nonconforming is defined as the ratio of the number of noncon-

D A .
~. P is an estimator

forming units in the sample D to the sample size n, that is, p =
of p and the mean and variance of p are p; = p and o5 = \/@ .

Suppose that the true fraction nonconforming p in the production process is known
or is a standard value specified by management. Then from (1.3.1), the center line

and control limits of the fraction nonconforming control chart would be




