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ABSTRACT

PARTIAL ACTIONS OF GROUPS AND ACTIONS OF
INVERSE SEMIGROUPS

BY:

YOUSEF YADOLLAHI

One of our major goals in this thesis is to introduce for each group G an
inverse semigroup associated to G which we will denote it by § (G). We show
that if G is a finite group of order p, then S(G) has 2°7%(p + 1) elemen:s.
The concept of partial actions of groups on C*-algebras are generalized to
concept of partial actions of groups on sets.

Then we show that for every group G and any set X, there is a one-to-one
correspondence between partial actions of G on X and actions of S (G) on
X.
A, is constructed as an auxiliary C*-algebra, and the partial group C *-algebra
of G is the C"-algebra C}(G) given by the crossed product of 4, by 6, that
is,

C:(G) = A, X4 G.

p

In this thesis we show that there is a one-to-one correspondence between

partial representations of G on H and representations of S(G) on H and

iv




C"-algebra representations of C;(G) on H.
While the usual group C*-algebra of finite commutative groups forgets every-

thing but the order of the group, we show that the partial group C*-algebra

of the two commutative groups of order four, namely + and = @ =, are not

isomorphic.
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CHAPTER 1

FUNDAMENTAL CONCEPTS




1. FUNDAMENTAL CONCEPTS

In this chapter we study the basic concepts which we need in later chap-
ters.
We begin by definitions of semigroups and inverse semigroups in section 1. In
section 2 we define the groups defined via generators and relations. We study
some properties of C*-algebras and we define Hilbert bimodules in section 3.
Section 4 is devoted to the study of concepts of partial actions of groups and
investigate some properties of partial C*-crossed products.

In section 5 we briefly study, the C*-crossed products.

1.1. Inverse Semigroups

Definition 1.1.1. A semigroup is a nonempty set S together with a
binary operation on S which is associative, that is, a(bc) = (ab)c for all a, b, ¢

in S.

Definition 1.1.2. If ¢ is a mapping from a semigroup (S,0) into a

semigroup (T, #) we say that ¢ is a homomorphism if

¢(zoy) = ¢(z) * ¢(y)

for all z,y in S.




If ¢ is one-one we shall call it a monomorphism, and if it is both one-one and

onto we shall call it an isomorphism.

Definition 1.1.3. If (5,0) is a semigroup, then a nonempty subset T' of
S is called a subsemigroup of S if it is closed with respect to multiplication

ie. ifxzoyeT,forall z,yin T.

Definition 1.1.4. If A is an arbitrary non-empty subset of a semigroup
S, then the family of subsemigroups of S containing A is nonemtpy, since
S itself is one such semigroup, hence the intersection of the family is a sub-
semigroup of S containing A. We denote it by < 4 >.
The subsemigroup < A > comnsists of all elements of S that can be expressed
as finite products of elements in A. If < A >= S we shall say that A is a set

of generators for S or a generating set of S.

Definition 1.1.5. An element a of semigroup S is called regular if there
exists = in S such that aza = a. The semigroup S is called regular if all its

elements are regular.

Definition 1.1.6. A subset A of a semigroup S is called
(i) right unitary if sa is in A then sisin Aforallain A and sin S.

(ii) left unitary if as is in A then sisin A for all ¢ in 4 and s in S.

(iii) unitary if it is both left and right unitary.

An element e in a semigroup is said to be idempotent if € = e.

Definition 1.1.7. A regular semigroup S is said to be E-unitary if the




set E of idempotents is a unitary subsemigroup of S.

Definition 1.1.8. A Clifford semigroup is a regular semigroup S in which
the idempyotents are central, i.e., in which ez = ze for every idempotent e

and every element z in S.

Definition 1.1.9. A semigroup S is said to be an inverse semigroup
provided there exists, for each z in S, a unique element z* in S such that
o (i) zzz==z

(i) z*zz* = z*.

Proposition 1.1.10. Let S be an inverse semigroup and E be the set of

idempotents of S, then

(a) (s*)* = s for every s in S.
(b) e = e for every e in E.

Proof. See Proposition 1.4 of [11, Chapter V, Section 1].

Proposition 1.1.11. If sy,s,,...,s, are elements of an inverse semi-
group S, then
% LA

(5182...8p)" =sksl_;...855].

Proof. See Corollary 1.5 of [11, Chapter V, Seciton 1].

Proposition 1.1.12. Let S be an inverse semigroup, let T be a semi-
group and let ¢ : § — T be a homomorphism. Then ¢(S) is an inverse

semigroup.

Proof. See Proposition 1.6 of [11, Chapter V, Section 1.




1.2. The Group Defined Via Generators and Relations
In this section, we briefly introduce, the concept of the group defined
via generators and relations. For more information about groups defined via
generators and relations may see [16].
Let a,b,¢,...be distinct symbols and form the new symbols a ™%, 571, ¢~1

A word W in the symbols a, b, ¢, ... is a finite sequence

f17f2a---afn—1sfn (1)

where each of the f, is one of the symbols

-1 -1 -1 .
a,bye,...,a” b7 e, L

the length L(W) of W is the integer n. For convenience we introduce the
empty word of length zero and denote it by 1.
If we wish to exhibit the symbols involved in W we write W(a, b,¢c,...). It is

customery to write the sequence (1) without the commas as

f1f2---fn—1fn- (2)

It is also customry to abbreviate a block of n consecutive symbols a by a™, and
to abbreviate a block of n consecutive symbols a! by a™"; e.g., the word
a®b?b71a"%¢c! is the same as the word aaabbb~ta~la ¢!, but is different
from the word a®ba=%¢c71.

Thus aa™ is a word in a of length two; and 1 is a word in @ and b and ¢ of
length zero.

The inverse W™! of a word W given by (2) is the word

) RN e (3)

PR




where if f, is @ or a”! then fJ! is a™! or a, respectively, and similarly if f,
is one of the symbols b or 71, ¢ or ¢71,...; the inverse of the empty word is
itself.

For example (aa™b)"! =b7taa™t, 171 = 1.

Clearly, L(W) = L(W™1), and (W) =W.

It W is the word fif;... f, and U is the word fif;... fi then we define their
juxtaposed product WU as the word fifas... fufifs. .. fL.

Clearly, (WU) ! =U'W~! and L(WU) = L(W) + L(U).

Given a mapping o of the symbols a,b,c,... into a group G with
afa) = g,a(b) = h,a(c) =k,...

then we say that (under o) a defines g,b defines h, ¢ defines k, ..., a~! defines
g~',b7" defines A1, ¢! defines k1,...; moreover, if W is given by (2) then

W defines the element, denoted W (g, h,k,...), in G given by

9192 -« . Gn—19n,

where f, defines g,; the empty word 1 defines the identity element 1 of G.
Clearly, if the words U and V define the elements p and ¢ of G, then U~!
defines p~! and UV defines pq.

If every element of G is defined by some word in a,b,¢c,..., then a,b,c,... are
called generating symbols for G (under «) and g, h, k, .. . are called generating
elements for G; if the context makes it clear, both generating symbols and
generating elements may be referred to as generators for G.

For example, if V' is the Klein four-group of elements z, —z,%, _Tl, that z

is the identity element of V', then under the mapping ¢ — —z, b — %,




the word a? defines the element z and the word ab defines the element —i;
therefore @ and b are generating symbols for V (under this mapping).

A word R(a,b,c,...) which defines the identity element 1 in G is called a

relator.
The equation

R(a,b,c,...) = S(a,b,c,...)
is called a relation if the word RS~ is a relator (or equivalently, if R and S
define the same element in G).
We can show that if given an arbitrary set of symbols, and an arbitrary
prescribed set of words in these symbols, there is a unique group (up to iso-

morphism) with the symbols as generators and the set of prescribed words

as defining relators.

1.3. C*-Algebras and Hilbert Bimodules

In this section we define C*-algebra. We begin by definition of Banach

algebra.

Definition 1.3.1. A Banach algebra is an algebra A over IF that has a
norm || - || relative to which A is a Banach space and such that:
[labl| < {lallfjoll,

for all a,b in A.

If a Banach algebra A has an identity e, i.e., ae = ea = a for all a in A, then

it is assumed that ||e|| = 1.

Definition 1.3.2. By an involution on an algebra A, we mean a mapping




z — z*, from A into A such that:
i) (az +y)" = az" +y";
i) (zy)* = y'z";
i) (z*)* = =z,
whenever z,y are in A, « is in C and @ denotes the complex conjugation of

.

Definition 1.3.3. A C*-algebra is a complex Banach *-algebra A that

satisfies the condition
la*al| = [a]%,
for a € A.

The above condition is called C*-condition.

Example 1.3.4. The simplest example of a C*-algebra is €. In this

algebra we have o* = @ and ||| = |e| for all o in C.

Example 1.3.5. The set of all n-tuples with complex coordinate, C", is

a C*-algebra with the following structure:
ll(e1rc2,...,cn)|| = max{|e;| : 4 = 1,2,...,n},

(c1yc2y.nesen)(€, 00 nnycl) = (C1€), €25, - - -y CnCh),
(ers62,...,6a)" = (€1,C2,. .+, 8n).

Example 1.8.6. If X is a compact space. The set C(X) of all continuous

complex-valued functions on X is a C*-algebra with the following structure:

(af +Bg)(z) = of(z)+ By(z);




