نتایج جستجو برای: weakly 2-absorbing submodule
تعداد نتایج: 2567880 فیلتر نتایج به سال:
Let R be a commutative ring with identity , and M is unitary left R-module”, “A proper submodule E of an R-module called weakly quasi-prime if whenever r, s ∈ R, m M, 0 ≠ rsm implies that rm or sm E”. “We introduce the concept quasi 2-absorbing as generalization submodule”, where r,s,t ∈M 0≠ rstm rtm stm E. we study basic properties 2-absorbing. Furthermore, relationships other classes module a...
In this paper we introduce and study the concept weakly semi-2-absorbing submodule as a generalization of 2-absorbing subomdule, give some it is basic properties characterization
All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...
Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.
Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...
In this work, we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules. Let $R$ be a commutative ring with identity. We say that a non-zero submodule $N$ of an $R$-module $M$ is a emph{classical 2-absorbing secondary submodule} of $M$ ...
Let R be a commutative ring with identity and let M unitary R-module. In this paper, we introduce the notion of weakly S-2-absorbing submodule. Suppose that S is multiplicatively closed subset R. A submodule P (P:R M)∩S=∅ said to if there exists an element s ∈ such whenever a,b∈R m∈M 0≠abm∈P, then sab∈(P: M) or sam∈P sbm∈P. We give characterizations, properties examples submodules.
Abstract In this study, we aim to introduce the concepts of 1-absorbing prime submodules and weakly a unital module over noncommutative ring with nonzero identity. This is new class between (weakly submodules) 2-absorbing submodules). Let R be identity $$1\ne 0$$ 1 ≠ 0 </mml:m...
primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. in fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. in this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...
Let be a module over commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where proper submodule an -module is said to if whenever , for implies that either or generalization 2_Absorbing semi 2-Absorbing and strong form (Nearly–2–Absorbing, Pseudo_2_Absorbing, Semi–2–Absorbing) submodules. Several properties characterization...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید