نتایج جستجو برای: tuple total restrained domatic number
تعداد نتایج: 1838024 فیلتر نتایج به سال:
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
for any integer $kgeq 1$, a set $s$ of vertices in a graph $g=(v,e)$ is a $k$-tuple total dominating set of $g$ if any vertex of $g$ is adjacent to at least $k$ vertices in $s$, and any vertex of $v-s$ is adjacent to at least $k$ vertices in $v-s$. the minimum number of vertices of such a set in $g$ we call the $k$-tuple total restrained domination number of $g$. the maximum num...
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
for every positive integer k, a set s of vertices in a graph g = (v;e) is a k- tuple dominating set of g if every vertex of v -s is adjacent to at least k vertices and every vertex of s is adjacent to at least k - 1 vertices in s. the minimum cardinality of a k-tuple dominating set of g is the k-tuple domination number of g. when k = 1, a k-tuple domination number is the well-studied domination...
a set $s$ of vertices of a graph $g=(v,e)$ without isolated vertex is a {em total dominating set} if every vertex of $v(g)$ is adjacent to some vertex in $s$. the {em total domatic number} of a graph $g$ is the maximum number of total dominating sets into which the vertex set of $g$ can be partitioned. we show that the total domatic number of a random $r$-regular graph is almost...
let $k$ be a positive integer. a subset $s$ of $v(g)$ in a graph $g$ is a $k$-tuple total dominating set of $g$ if every vertex of $g$ has at least $k$ neighbors in $s$. the $k$-tuple total domination number $gamma _{times k,t}(g)$ of $g$ is the minimum cardinality of a $k$-tuple total dominating set of $g$. if$v(g)=v^{0}={v_{1}^{0},v_{2}^{0},ldots ,v_{n}^{0}}$ and $e(g)=e_{0}$, then for any in...
The paper studies the domatic numbers and the total domatic numbers of graphs having cut-vertices. We shall study the domatic number d(G) and the total domatic number d t (G) of a graph G. A survey of the related theory is given in 3]. We consider nite, undirected graphs without loops or multiple edges. A subset D of the vertex set V (G) of a graph G is called dominating (total dominating), if ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید