نتایج جستجو برای: total Roman domination

تعداد نتایج: 819671  

Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...

‎Let $G$ be a finite and simple graph with vertex set $V(G)$‎. ‎A nonnegative signed total Roman dominating function (NNSTRDF) on a‎ ‎graph $G$ is a function $f:V(G)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N(v)}f(x)ge 0$ for each‎ ‎$vin V(G)$‎, ‎where $N(v)$ is the open neighborhood of $v$‎, ‎and (ii) every vertex $u$ for which‎ ‎$f(u...

A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...

Journal: :Applicable Analysis and Discrete Mathematics 2016

Journal: :Graphs and Combinatorics 2011
Vadim E. Zverovich Anush Poghosyan

In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...

Journal: :transactions on combinatorics 2015
roushini leely pushpam sampath padmapriea

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

Journal: :Symmetry 2021

Let G be a graph with no isolated vertex and let N(v) the open neighbourhood of v∈V(G). f:V(G)→{0,1,2} function Vi={v∈V(G):f(v)=i} for every i∈{0,1,2}. We say that f is strongly total Roman dominating on if subgraph induced by V1∪V2 has N(v)∩V2≠∅ v∈V(G)\V2. The domination number G, denoted γtRs(G), defined as minimum weight ω(f)=∑x∈V(G)f(x) among all functions G. This paper devoted to study it ...

2017
Nasrin Dehgardi Lutz Volkmann

Let D be a finite and simple digraph with vertex set V (D). A signed total Roman k-dominating function (STRkDF) on D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑ x∈N−(v) f(x) ≥ k for each v ∈ V (D), where N−(v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight o...

Journal: :transactions on combinatorics 2013
jafar amjadi hossein karami seyed mahmoud sheikholeslami lutz volkmann

a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...

Journal: :Results in Mathematics 2019

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید