نتایج جستجو برای: t-proximinal set

تعداد نتایج: 1317050  

Journal: :iranian journal of fuzzy systems 2008
s. m. vaezpour f. karimi

the main purpose of this paper is to find t-best approximations in fuzzy normed spaces. we introduce the notions of t-proximinal sets and f-approximations and prove some interesting theorems. in particular, we investigate the set of all t-best approximations to an element from a set.

The main purpose of this paper is to find t-best approximations in fuzzy normed spaces. We introduce the notions of t-proximinal sets and F-approximations and prove some interesting theorems. In particular, we investigate the set of all t-best approximations to an element from a set.

Journal: :J. Applied Mathematics 2012
Zhanfei Zuo

Let X be a Banach space and K a nonempty subset of X. The set K is called proximinal if for each x ∈ X, there exists an element y ∈ K such that ‖x − y‖ d x,K , where d x,K inf{‖x − z‖ : z ∈ K}. Let CB K , C K , P K , F T denote the family of nonempty closed bounded subsets, nonempty compact subsets, nonempty proximinal bounded subsets of K, and the set of fixed points, respectively. A multivalu...

2014
J. Kavikumar N. S. Manian M. B. K. Moorthy

The main purpose of this paper is to consider the new kind of approximation which is called as t-best coapproximation in fuzzy n-normed spaces. The set of all t-best coapproximation define the t-coproximinal, t-co-Chebyshev and F-best coapproximation and then prove several theorems pertaining to this sets. Keywords—Fuzzy-n-normed space, best coapproximation, co-proximinal, co-Chebyshev, F-best ...

2017
TANMOY PAUL

We show that a separable proximinal subspace of X, say Y is strongly proximinal (strongly ball proximinal) if and only if Lp(I, Y ) is strongly proximinal (strongly ball proximinal) in Lp(I,X), for 1 ≤ p <∞. The p =∞ case requires a stronger assumption, that of ’uniform proximinality’. Further, we show that a separable subspace Y is ball proximinal in X if and only if Lp(I, Y ) is ball proximin...

2013
Lixin Cheng Zhenghua Luo Wen Zhang Bentuo Zheng

In this paper, we show that a closed convex set C of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space isometrically containing it if and only if C is locally (weakly, resp.) compact. As a consequence, it is proved that local compactness of C is also equivalent to that for every Banach space Y isometrically containing it, the metric projection from Y to C is nonemp...

Journal: :Journal of Approximation Theory 2002
A. L. Brown Frank Deutsch V. Indumathi Petar S. Kenderov

A number of semicontinuity concepts and the relations between them are discussed. Characterizations are given for when the (set-valued) metric projection P M onto a proximinal subspace M of a normed linear space X is approximate lower semicontinuous or 2-lower semicontinuous. A geometric characterization is given of those normed linear spaces X such that the metric projection onto every one-dim...

2014
PEI-KEE LIN WEN ZHANG BENTUO ZHENG

Let Y be an E-proximinal (respectively, a strongly proximinal) subspace of X. We prove that Y is (strongly) ball proximinal in X if and only if for any x ∈ X with (x+ Y ) ∩BX 6= ∅, (x+ Y ) ∩BX is (strongly) proximinal in x+Y . Using this characterization and a smart construction, we obtain three Banach spaces Z ⊂ Y ⊂ X such that Z is ball proximinal in X and Y/Z is ball proximinal in X/Z, but Y...

1979
KA-SING LAU

A closed subspace M in a Banach space X is called t/-proximinal if it satisfies: (1 + p)S n (S + M) ç S + e(pXS n M), for some positive valued function t(p), p > 0, and e(p) -» 0 as p -> 0, where 5 is the closed unit ball of X. One of the important properties of this class of subspaces is that the metric projections are continuous. We show that many interesting subspaces are (/-proximinal, for ...

2015
C. R. Jayanarayanan Tanmoy Paul

We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید