نتایج جستجو برای: sulfuric acid magnetic nanocatalyst
تعداد نتایج: 1073764 فیلتر نتایج به سال:
a novel acrylic acid-functionalized fe3o4 magnetic nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperacid in chemical transformations. the structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (tem), thermogravimetric analysis (tga), and ft-ir...
Sulfuric acid functionalized magnetic nanocatalyst (SAMNC) has been prepared as an efficientacidic and applied in the one-pot preparation of 2,3-dihydroquinazolin-4 (1H) -one derivatives.This catalyst has been characterized by FT-IR, SEM, and VSM. According to the obtainedresults, including time, yield and recyclability, SAMNC could be considered as an efficient catalystfor organic transformati...
abstract in the present research solution of chalcopyrite in sulfuric acid in hydrometallurgy method using electrochemistry with cyclic voltammetry technique has been investigated. the value of maximum reduction peak current of copper ions represents the measure of solubility. in this research different parameters temperature, potential, potential exert time, chalcopyrite concentration, sulfur...
The Fe nanowires were prepared by Ac electrodeposition method. The two steps anodized aluminum oxides (alumina) were used as templates for electrodeposition of magnetic nanowires. Sulfuric acid was used to anodize aluminum. The pours diameter and growth rate of alumina were investigated. The FeSO4 electrolyte was used for growth of nanowires. The prepared magnetic nanowires were characterized b...
n-propylsulfamic acid supported onto magnetic fe3o4 nanoparticles (mnps-psa) was investigated as an efficient and magnetically recoverable catalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with variety aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. the magnetic nanocatalyst can be readily recovered easily ...
The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...
An immobilized copper Schiff base tridentate complex was prepared in three steps from SBA-15 supports. The immobilized copper nanocatalyst (heterogeneous catalyst) was characterized by Fourier transform infrared spectroscopy (FT-IR), cross polarization magic angle spinning (CP-MAS), 13-carbon nuclear magnetic resonance (13C-NMR), atomic absorption spectroscopy (AAS), thermogravimetric analysis ...
N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) was investigated as an efficient and magnetically recoverable catalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with variety aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be readily recovered easily ...
A bifunctional nanocatalyst composed of iron containing SBA-15 material modified with sulfonic acid groups was synthesized by a mechanochemical approach. A full characterization of the obtained nanocatalyst was performed by N2 physisorption isotherms analysis, transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier-Infrared Spectroscopy (FT-IR). The mechanochemically ...
Cu(0) nanoparticles were deposited on a nanoporous polymer to develop a novel nanocatalyst (Cu-B) for carrying out Ullmann coupling of aryl halides with amines in water. Non-aqueous polymerization of a mixture of divinylbenzene and acrylic acid under hydrothermal conditions followed by the deposition of Cu(0) nanoparticles were adopted to afford the Cu-B nanocatalyst. In order to compare the ca...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید