نتایج جستجو برای: strongly connected digraph

تعداد نتایج: 337040  

Journal: :bulletin of the iranian mathematical society 2015
j. li b. zhou

it is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. in this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.

2005
Jun-Ming Xu Min Lü

The restricted arc-connectivity λ′ of a strongly connected digraph G is the minimum cardinality of an arc cut F in G such that every strongly connected component of G−F contains at least two vertices. This paper shows that for a d-regular strongly connected digraph with order n and diameter k ≥ 4, if λ′ exists, then λ′(G) ≥ min { (n − dk−1)(d− 1) dk−1 + d− 2 , 2d− 2 } As consequences, the restr...

Journal: :CoRR 2018
Dong Yeap Kang

Mader (1985) proved that every strongly $k$-connected $n$-vertex digraph contains a strongly $k$-connected spanning subgraph with at most $2kn - 2k^2$ edges, and this is sharp. For dense strongly $k$-connected digraphs, the bound can be significantly improved for dense strongly $k$-connected digraphs. Let $\overline{\Delta}(D)$ be the maximum degree of the complement of the underlying undirecte...

Journal: :Discrete Mathematics 1997
Günter Schaar A. Pawel Wojda

Let D be a strongly k−connected digraph of order n ≥ 2. We prove that for every l ≥ n 2k the power Dl of D is Hamiltonian. Moreover, for any n > 2k ≥ 2 we exhibit strongly k-connected digraphs D of order n such that Dl−1 is non-Hamiltonian for l = d n 2ke. We use standard terminology, unless otherwise stated. A digraph D = (V, A) of order n ≥ 2 is said to be strongly q-arc Hamiltonian if for an...

2008
Noga Alon Fedor V. Fomin Gregory Gutin Michael Krivelevich Saket Saurabh

The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we obtain two combinatorial results on the number of leaves in out-branchings. We show that – every strongly connected n-vertex digraph D with minimum indegree at least 3 has an out-branching with at least (n/4) −...

Journal: :Discrete Mathematics & Theoretical Computer Science 2014
Janusz Adamus Lech Adamus Anders Yeo

We prove a sharp Meyniel-type criterion for hamiltonicity of a balanced bipartite digraph: For a ≥ 2, a strongly connected balanced bipartite digraph D on 2a vertices is hamiltonian if d(u) + d(v) ≥ 3a whenever uv / ∈ A(D) and vu / ∈ A(D). As a consequence, we obtain a sharp sufficient condition for hamiltonicity in terms of the minimal degree: a strongly connected balanced bipartite digraph D ...

2007
Noga Alon Fedor V. Fomin Gregory Gutin Michael Krivelevich Saket Saurabh

The Directed Maximum Leaf Out-Branching problem is to find an out-branching (i.e. a rooted oriented spanning tree) in a given digraph with the maximum number of leaves. In this paper, we improve known parameterized algorithms and combinatorial bounds on the number of leaves in out-branchings. We show that – every strongly connected digraph D of order n with minimum indegree at least 3 has an ou...

Journal: :Discrete Applied Mathematics 2009
Jixiang Meng Zhao Zhang

A digraph is said to be super-connected if every minimum vertex cut is the out-neighbor set or in-neighbor set of a vertex. A digraph is said to be reducible, if there are two vertices with the same out-neighbor set or the same in-neighbor set. In this paper, we prove that a strongly connected arc-transitive oriented graph is either reducible or super-connected. Furthermore, if this digraph is ...

2002
JIANPING ZHU Robert W. Robinson Jianping Zhu E. Rodney Canfield Thiab Taha Maureen Grasso

by JIANPING ZHU (Under the Direction of Robert W. Robinson) ABSTRACT In this thesis, we consider the following problem: Given a strongly connected digraph G = (V, E), where V is the set of vertices and E is the set of edges , “is it a minimal strong connected digraph?”. A reducible edges e is one for which G−e is strongly connected. A minimal strongly connected digraph is one with no reducible ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید