نتایج جستجو برای: strictly convex Banach space
تعداد نتایج: 577702 فیلتر نتایج به سال:
let $omega_x$ be a bounded, circular and strictly convex domain of a banach space $x$ and $mathcal{h}(omega_x)$ denote the space of all holomorphic functions defined on $omega_x$. the growth space $mathcal{a}^omega(omega_x)$ is the space of all $finmathcal{h}(omega_x)$ for which $$|f(x)|leqslant c omega(r_{omega_x}(x)),quad xin omega_x,$$ for some constant $c>0$, whenever $r_{omega_x}$ is the m...
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
the purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex banach spacehaving a uniformly gateaux differentiable norm. as a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
the purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex banach spacehaving a uniformly gateaux differentiable norm. as a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
in chapter 1, charactrizations of fragmentability, which are obtained by namioka (37), ribarska (45) and kenderov-moors (32), are given. also the connection between fragmentability and its variants and other topics in banach spaces such as analytic space, the radone-nikodym property, differentiability of convex functions, kadec renorming are discussed. in chapter 2, we use game characterization...
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
The real geometric properties of spaces of polynomials are discussed in [1, 6]. In particular, it is shown that the symmetric injective tensor product space ⊗̂n,s,εE is not strictly convex if E is a Banach space of dimE ≥ 2 and if n ≥ 2 holds. Let E be a Banach space over a real or complex filed and E is denoted as the Banach dual of E. An element x in the unit sphere SE is called a (real) extre...
we first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a banach space and next show that if the banach space is having the opial condition, then the fixed points set of such a mapping with the convex range is nonempty. in particular, we establish that if the banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
the purpose of this paper is to introduce a new mapping for a finite family of accretive operators and introduce an iterative algorithm for finding a common zero of a finite family of accretive operators in a real reflexive strictly convex banach space which has a uniformly g^ateaux differentiable norm and admits the duality mapping $j_{varphi}$, where $varphi$ is a gauge function ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید