نتایج جستجو برای: stochastic partial differential equations of itˆo type
تعداد نتایج: 21328885 فیلتر نتایج به سال:
in the present article, we focus on the numerical approximation of stochastic partial differential equations of itˆo type with space-time white noise process, in particular, parabolic equations. for each case of additive andmultiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic finite difference schemes and the stability and consisten...
In the present article, we focus on the numerical approximation of stochastic partial differential equations of Itˆo type with space-time white noise process, in particular, parabolic equations. For each case of additive and multiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic finite difference schemes and the stability and consiste...
we focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of it¨o type, in particular, parabolic equations. the main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
in this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. we applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. the main properties of deterministic difference schemes,...
we focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of it¨o type, in particular, parabolic equations. the main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
in this thesis we will present three topics. we define approximate fixed points in fuzzy normed spaces. also we obtain some necessary and sufficient conditions on the existence of? -fixed points for ? > 0. at the continue some results about approximate fixed points for a class of non-expansive maps on g-metric spaces are obtained and we define approximate fixed points in partial metric spa...
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
in this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in f(t,x(t))dt +g(t,x(t))dw_t$ in which the multifunction $f$ is semimonotone and hemicontinuous and the operator-valued multifunction $g$ satisfies a lipschitz condition. we define the it^{o} stochastic integral of operator set-valued stochastic pr...
semilinear stochastic evolution equations with multiplicative l'evy noise are considered. the drift term is assumed to be monotone nonlinear and with linear growth. unlike other similar works, we do not impose coercivity conditions on coefficients. we establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. as corollarie...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید