نتایج جستجو برای: s $d$
تعداد نتایج: 1188908 فیلتر نتایج به سال:
فرض کنید d یک دامنه صحیح، * یک عملگر ستاره روی d و s یک بسته ضربی از d باشد. s را یک مجموعه *g_شکافنده از d می نامند هرگاه برای d ? d ?=? داشته باشیم d = st که s ? s و t ? d به طوریکه به ازای هرs?, t)? = d ،s? ? s).
فرض کنید g = (v,e) گراف?بامجموعهرئوس v و مجموعه یال های e باشد و d = (v,a) یک گراف جهت دار بامجموعهرئوس v و مجموعه یال های a باشد.عدد احاطه ای خروجی یک گراف جهت دار d = (v,a) مینیمم اندازه یک زیرمجموعه s از v است، بطوریکه هر رأس در v-s همسایگی خروجی بعضی از رئوس در s باشد.عدد احاطه ای ورودی به طور مشابه تعریف می شود. اگر به ازای هر رأس v ?v?s ، رئوس u1, u2 ? s موجود باشند(ممکن است u1 و u2 بر هم...
تاکنون تعداد قابل توجهی شرط کافی برای همیلتنی بودن گراف های همبند با n رأس ثابت شده است. از مشهورترین آن ها می توان به شروط دیراک( 1952 )( اگر?(g)?n/2) و اُور(1960)( برای هر دو رأس نامجاورِ uوv ، d(u)+d(v)?n) اشاره کرد. پس از آن، فَن(1984) این دو شرط را گسترش داد و ثابت کرد که اگر g، ساده و 2-همبند با n رأس باشد و برای هر جفت رأس نامجاورِ xوy که d(x,y)=2، داشته باشیم: max{d(x),d(y)}? n/2، g همیلتنی...
فرض کنید g = (v,e) یک گراف ساده باشد. مجموعه ی s? v را اتحاد تهاجمی گوییم، هرگاه برای هر راس در s n(s) ? داشته باشیم |n[v] ?s|?|n[v]?s|. همچنین s را یک اتحاد تهاجمی فراگیر گوییم، هرگاه شرط فوق برای هر راس در v ?s برقرار باشد. یافتن یک اتحاد تهاجمی فراگیر در گراف، یک مساله ی np-سخت است. بنابراین برای به دست آوردن پارامترهای اتحاد تهاجمی فراگیر یعنی ?_o (g) و ?_o ? (g)، نیاز داریم تا کرانهایی برح...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید