نتایج جستجو برای: reversible ring
تعداد نتایج: 175854 فیلتر نتایج به سال:
in this note we introduce the notion of weak mccoy rings as a generalization of mccoy rings, and investigate their properties. also we show that, if is a semi-commutative ring, then is weak mccoy if and only if is weak mccoy.
in this paper, we introduce a class of rings which is a generalization of reversible rings. let r be a ring with identity. a ring r is called central reversible if for any a,b ∈ r, ab=0 implies ba belongs to the center of r. since every reversible ring is central reversible, we study sufficient conditions for central reversible rings to be reversible. we prove that some results of reversible ri...
We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...
we introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. we firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. we next argue about the strong$alpha$-reversibility of some kinds of extensions. a number ofproperties of this version are established. it is shown ...
Cohn called a ring $R$ is reversible if whenever $ab = 0,$ then $ba = 0$ for $a,bin R.$ The reversible property is an important role in noncommutative ring theory. Recently, Abdul-Jabbar et al. studied the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring). In this paper, we extend the CNZ pr...
Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors. The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero zero-divisors of $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. In this paper, we bring some results about undirected zero-divisor graph of a monoid ring o...
let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors. the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero zero-divisors of $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید