نتایج جستجو برای: quadratic $rho$-functional inequality

تعداد نتایج: 700227  

Journal: :international journal of nonlinear analysis and applications 2015
choonkil park sang og kim jung rye lee dong yun shin

in cite{p}, park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| && qquad le  left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) -  f(y)right)right|,  nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|andbegin{eqnarray}&& left|2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}r...

In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le  left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) -  f(y)right)right|,  nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|

Journal: :Journal of Nonlinear Analysis and Application 2014

Journal: :Journal of Nonlinear Sciences and Applications 2016

Journal: :Vietnam Journal of Mechanics 2009

Journal: :Journal of Mathematical Analysis and Applications 2006

Journal: :Journal of Mathematical Analysis and Applications 2007

Journal: :bulletin of the iranian mathematical society 0
j. olko agh university of science and technology, faculty of applied mathematics, al. mickiewicza 30, 30-059 kraków, poland.

it is well known that a microperiodic function mapping a topological group into reals, which is continuous at some point is constant. we introduce the notion of a microperiodic multifunction, defined on a topological group with values in a metric space, and study regularity conditions implying an analogous result. we deal with vietoris and hausdorff continuity concepts.stability of microperiodi...

Journal: :international journal of nonlinear analysis and applications 0
choonkil park research nstitute for natural sciences, hanyang university seoul 04763, korea sang og kim department of mathematics hallym university chuncheon 24252 korea

in this paper, we solve the quadratic $alpha$ -functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f( alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-archimedean number with $alpha^{-2}neq 3$. using the fixed point method and the direct method, we prove the hyers-ulam stability of the quadratic $alpha$-functional equation (0.1) in non-archimedean banach spaces.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید