نتایج جستجو برای: quadratic $rho$-functional inequality
تعداد نتایج: 700227 فیلتر نتایج به سال:
in cite{p}, park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| && qquad le left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) - f(y)right)right|, nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|andbegin{eqnarray}&& left|2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}r...
In cite{p}, Park introduced the quadratic $rho$-functional inequalitiesbegin{eqnarray}label{E01}&& |f(x+y)+f(x-y)-2f(x)-2f(y)| \ && qquad le left|rholeft(2 fleft(frac{x+y}{2}right) + 2 fleft(frac{x-y}{2}right)- f(x) - f(y)right)right|, nonumberend{eqnarray}where $rho$ is a fixed complex number with $|rho|
it is well known that a microperiodic function mapping a topological group into reals, which is continuous at some point is constant. we introduce the notion of a microperiodic multifunction, defined on a topological group with values in a metric space, and study regularity conditions implying an analogous result. we deal with vietoris and hausdorff continuity concepts.stability of microperiodi...
in this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-archimedean number with $alpha^{-2}neq 3$. using the fixed point method and the direct method, we prove the hyers-ulam stability of the quadratic $alpha$-functional equation (0.1) in non-archimedean banach spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید