نتایج جستجو برای: psi-bounded
تعداد نتایج: 73401 فیلتر نتایج به سال:
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
the aim of this paper is to study the behaviour of certain sequence of nonlinear durrmeyer operators $nd_{n}f$ of the form $$(nd_{n}f)(x)=intlimits_{0}^{1}k_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{n}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% k_{n}left( x,t,uright) $ satisfies some suitable assumptions. here we estimate the rate...
We provide necessary and sucient conditions for psi-conditional as-ymptotic stability of the solution of a linear matrix Lyapunov system and sucientconditions for psi -conditional asymptotic stability of the solution of a rst ordernon-linear matrix Lyapunov system X0 = A(t)X + XB(t) + F(t;X).
let $g$ be a locally compact group, $h$ be a compact subgroup of $g$ and $varpi$ be a representation of the homogeneous space $g/h$ on a hilbert space $mathcal h$. for $psi in l^p(g/h), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $l_{psi,zeta} $ on $mathcal h$ and we show that it is a bounded operator. moreover, we prove that the localizat...
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
Let $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and $H$ be a compact subgroup of $G$. For an admissible wavelet $zeta$ for $varpi$ and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded compact operators which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.
Private Set Intersection (PSI) and other private set operations have many current and emerging applications. Numerous PSI techniques have been proposed that vary widely in terms of underlying cryptographic primitives, security assumptions as well as complexity. One recent strand of PSI-related research focused on an additional privacy property of hiding participants’ input sizes. Despite some i...
Let \(\Omega\subset\mathbb{R}^{n-1}\) be a bounded star-shaped domain and \(\Omega_\psi\) an outward cuspidal with base \(\Omega\). We prove that for \(1<p\leq\infty\), \(W^{1, p}(\Omega_\psi)=M^{1,p}(\Omega_\psi)\) if only p}(\Omega)=M^{1, p}(\Omega)\).
We show that an infinite Toeplitz+Hankel matrix $T(\varphi ) + H(\psi )$ generates a bounded [compact] operator on $\ell ^p(\mathbb N _0)$ with $1\leq p\leq \infty $ if and only both $H(\psi are [compact]. also give anal
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید