نتایج جستجو برای: perfect $r$
تعداد نتایج: 489801 فیلتر نتایج به سال:
Let H be an r-partite r-graph, all of whose sides have the same size n. Suppose that there exist two sides of H , each satisfying the following condition: the degree of each legal r−1-tuple contained in the complement of this side is strictly larger than n 2 . We prove that under this condition H must have a perfect matching. This answers a question of Kühn and Osthus.
in this paper, we give some necessary conditions for an $r$-partite graph such that the edge ring of the graph is cohen-macaulay. it is proved that if there exists a cover of an $r$-partite cohen-macaulay graph by disjoint cliques of size $r$, then such a cover is unique.
We call a ring $R$ right generalized semiperfect if every simple right $R$-module is an epimorphic image of a flat right $R$-module with small kernel, that is, every simple right $R$-module has a flat $B$-cover. We give some properties of such rings along with examples. We introduce flat strong covers as flat covers which are also flat $B$-covers and give characterizations of $A$-perfe...
we call a ring $r$ right generalized semiperfect if every simple right $r$-module is an epimorphic image of a flat right $r$-module with small kernel, that is, every simple right $r$-module has a flat $b$-cover. we give some properties of such rings along with examples. we introduce flat strong covers as flat covers which are also flat $b$-covers and give characterizations of $a$-perfe...
A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید