نتایج جستجو برای: normal edge-transitive
تعداد نتایج: 674386 فیلتر نتایج به سال:
darafsheh and assari in [normal edge-transitive cayley graphs on non-abelian groups of order 4p, where $p$ is a prime number, sci. china math., 56 (1) (2013) 213-219.] classified the connected normal edge transitive and $frac{1}{2}-$arc-transitive cayley graph of groups of order $4p$. in this paper we continue this work by classifying the connected cayley graph of groups of order...
darafsheh and assari in [normal edge-transitive cayley graphs onnon-abelian groups of order 4p, where p is a prime number, sci. china math. {bf 56} (1) (2013) 213$-$219.] classified the connected normal edge transitive and $frac{1}{2}-$arc-transitive cayley graph of groups of order$4p$. in this paper we continue this work by classifying theconnected cayley graph of groups of order $2pq$, $p > q...
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
for two normal edge-transitive cayley graphs on groups h and k which have no common direct factor and gcd(jh=h ′j; jz(k)j) = 1 = gcd(jk=k ′j; jz(h)j), we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
a graph $gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $gamma$ acts transitively on $v(gamma)$ or $e(gamma)$, respectively. let $gamma=cay(g,s)$ be a cayley graph on $g$ relative to $s$. then, $gamma$ is said to be normal edge-transitive, if $n_{aut(gamma)}(g)$ acts transitively on edges. in this paper, the eigenvalues of normal edge-tra...
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
The symmetry properties of mathematical structures are often important for understanding these structures. Graphs sometimes have a large group of symmetries, especially when they have an algebraic construction such as the Cayley graphs. These graphs are constructed from abstract groups and are vertex-transitive and this is the reason for their symmetric appearance. Some Cayley graphs have even ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید