نتایج جستجو برای: non-small submodule
تعداد نتایج: 1958455 فیلتر نتایج به سال:
let $r$ be a commutative ring and let $m$ be an $r$-module. we define the small intersection graph $g(m)$ of $m$ with all non-small proper submodules of $m$ as vertices and two distinct vertices $n, k$ are adjacent if and only if $ncap k$ is a non-small submodule of $m$. in this article, we investigate the interplay between the graph-theoretic properties of $g(m)$ and algebraic properties of $m...
let $r$ be an arbitrary ring and $t$ be a submodule of an $r$-module $m$. a submodule $n$ of $m$ is called $t$-small in $m$ provided for each submodule $x$ of $m$, $tsubseteq x+n$ implies that $tsubseteq x$. we study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
Let $R$ be a commutative ring and let $M$ be an $R$-module. We define the small intersection graph $G(M)$ of $M$ with all non-small proper submodules of $M$ as vertices and two distinct vertices $N, K$ are adjacent if and only if $Ncap K$ is a non-small submodule of $M$. In this article, we investigate the interplay between the graph-theoretic properties of $G(M)$ and algebraic properties of $M...
let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...
Let $M_R$ be a module with $S=End(M_R)$. We call a submodule $K$ of $M_R$ annihilator-small if $K+T=M$, $T$ a submodule of $M_R$, implies that $ell_S(T)=0$, where $ell_S$ indicates the left annihilator of $T$ over $S$. The sum $A_R(M)$ of all such submodules of $M_R$ contains the Jacobson radical $Rad(M)$ and the left singular submodule $Z_S(M)$. If $M_R$ is cyclic, then $A_R(M)$ is the unique ...
Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
Throughout this paper, R will denote a commutative ring with identity and M is a unitary R- module and Z will denote the ring of integers. We introduce the graph Ω(M) of module M with the set of vertices contain all nontrivial non-essential submodules of M. We investigate the interplay between graph-theoretic properties of Ω(M) and algebraic properties of M. Also, we assign the values of natura...
In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.
in this paper we introduce the notions of g∗l-module and g∗l-module whichare two proper generalizations of δ-lifting modules. we give some characteriza tions and properties of these modules. we show that a g∗l-module decomposesinto a semisimple submodule m1 and a submodule m2 of m such that every non-zero submodule of m2 contains a non-zero δ-cosingular submodule.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید